

Interactive Machines: From Questions **to** Experience

Giuseppe Riccardi

University of Trento, Italy

The Vision

- Why Natural Language Question/Answer?
- Interactive machines
- Interactive eco-systems

For the sake of asking questions

- Knowledge will do it?
 - Why water increases its volume when it freezes?

For the sake of asking questions

Knowledge will do it?

Why water increases its volume when it freezes?

– GOOGLE.com → CHACHA.com →

Q: When water freezes its volume increases by how much percentA

A: When water freezes at 0°C its volume increases by about 9% under STP (Standard Temperature and Pressure).

Is that correct?

Knowledge-Based Q&A

- Precision of the answers
- Accountability of the resources
- Limitation of Document space (vs WEB)
- Brittleness of the natural language interface

"Computers are useless. They can only give answers."— Pablo Picasso, (1881-1973).

Search Engine Queries

Search vast amount of data using (almost) natural language

The search engine simple "drill"

- 1. Short Query ("universita' Trento ", "rifugio Passo San Pellegrino ")
- 2. Human Parse of Retrieved Documents
- 3. Human Decision whether to
 - A. Followup on links OR
 - B. GOTO 1

Knowledge-Based Q&A

DEEPQA Project

- IBM Research Funded project
 - Build QA engine (WATSON) capable of challenging Humans in the Jeopardy! Game.
 - Domain is virtually open. NO DB rather unstructured data (light or full supervision).
- Open Collaborative Research Agreement btw UTrento and IBM YorkTown
 - MIT, UTexas, CMU, USC
- Utrento
 - Interactive Machines to resolve Questions into Actions/ Decisions/Tasks
 - Machine Learning models for Parsing Sentences for QA Classification, Reranking Hypotheses (target Answers)

Natural Language Parsing and applications to DEEPQA

w Alessandro Moschitti

Outline

- Motivations
- Two important problems in Jeopardy
 - Question Classification
 - Answer Selection
- Results
- Conclusions

Let us Consider one Jeopardy Cue

- When hit by electrons, a phosphor gives off electromagnetic energy in this form
- Solutions: photons/light
- Electrons, phosphor and electromagnetic
 energy are in a relationship which gives the
 solution
- How representing and using such relation in a machine?

Issues and solutions

- How exploiting shallow semantic information?
- How dealing with noise and errors of semantic parsing?
- Designing hand-crafted rules to deal with any kind of errors or noise is not realistic
- We need statistical methods as they:
 - "can activate the rules" that maximize the probability of success
 - can automatically learn such probabilities from data

Important Tasks in Jeopardy

Classification in Definition vs not Definition in Jeopardy

 Usually, to do this is to lose a game without playing it

(solution: forfeit)

 When hit by electrons, a phosphor gives off electromagnetic energy in this form

Our Approach

- Supervised Approach
 - Positive and negative examples of definition questions
 - Syntactic information is intuitively important
 - Apply off-the-shelf parsers
 - As this is a new task, to extract features, we exploit tree kernels, e.g. the Partial Tree Kernel (Moschitti, ECML 2006)

Parse Tree

Similarity based on the number of common substructures

A portion of the substructure set

Experiments on Jeopardy Question Classification

Model	Precision	Recall	F1
RBC	28.27	70.59	40.38

66.7% of relative improvement on the rule-based classifier

PTK+WSK	67.66	66.99	67.32
+CSK+RBC			

- Rule Based Classifier (RBC)
- Only Word Overlap (BOW)
- Category Subsequences (CSK)
- Partial Tree Kernel (PTK)

Our Approach to Answer Re-ranking

- Learn a classifier of <question,answer> pairs
 - Positive: the answer is correct
 - Negative: otherwise
- Kernel approach
 - Several kernels applied to both questions and answers

An example of Jeopardy Question

Baseline Model

Best Model

Methodology:

- 1-Applying lemmatization and stemming in leaves level.
- 2-Add an anchor to pre-terminal and higher levels if the sub-trees are shared in Q and A.
- 3-Ignore stop words in matching procedure.

Precision/Recall Evaluation

	Precision	Recall	F1
Baseline with PTK (Partial Tree Kernel)	17.1%	59.37%	26.56
Best Model (STK) Syntactic Tree Kernel	17.71%	5.59%	8.50
Best Model with PTK	24.10%	61.12%	34.57

Ranking Precision at 1 and 5 best

	Evaluation on 1-best	Evaluation on 5-best
	Accuracy	Accuracy
Baseline	0.22	0.22
PTK (Baseline)	0.23	0.19
PTK (Best Model)	0.33	0.23

Conclusions

- We use of powerful ML algorithms
 - e.g. Support Vector Machines
 - robust to noise
- Abstract representations of examples
 - Similarity functions (Kernel Methods)
- Modeling Question semantics with advanced syntactic and shallow semantic structures
- Software already integrated in the Jeopardy System

Questions to Actions

Social Networks

Giuseppe Riccardi 33

Social Interactions

Citizen

Patient

Citizen

User

Worker

Peer

Relative

• • • • • • • • • • • • •

Company

Public Admin.

Doctor

Political Party

User

Supervisor

Peer

Relative

Can computers be part of the social network?

Network of Agents

Human – Computer Interaction

Spring 2010 37

Human – Computer Interaction

Spring 2010 38

Automatic Speech Understanding

Given the acoustic observation sequence $A=a_1,a_2,...,a_m$,

what is the most likely "word" sequence $W=w_1, w_2, ..., w_n$?

Let us pray

Lettuce spray

Natural Language Query to DB

TASK: Transactional

Machine Understanding

• User:

"Find the best flight from New York to Paris tomorrow business class"

Speech Recognition:

"Find the <u>bass</u> flight from <u>Newark Human</u> errs too! tomorrow business class"

Modeling Uncertainty:

- @action=Request-Reservation (0.9)

- @origin=Newark (0.5)

— @time-departure=Tuesday (0.7)

— @destination=Paris (0.8)

Cooperative Task

SW-HW Help Desk

Problem

(PART I)

Resolution

U Hi Good Morning

O Hi, How May I Help You?

U I am Roberta Sicconi calling from Cultural Affairs at City Hall.

U I had made a request for a password change yesterday

O Ok do you have the request track id?

U Uhm No I cannot find

O Ok do you have the date of the request?

U Well that was yesterday

O...ok I think I can find it...I got it

O It's for a password reset.

U Right. The problem is that I changed the password when I first logged in..

Personal Identification

Problem

Statement

Retrieval

O You were supposed to change first time you logged in. Now let's try together to log in

O can you tell me you **RVS** of your

Ticket Record U Well let me see. This is a new PC to me. Where can I find it?

> O Usually the tag is right next to the base of the chassy next to the power switch. It reads "inventario settore informatico".

> computer

Problem Resolution (USER)

Giuseppe Riccardi

10/13/2008

II Inventario Settore

Dialog Models (DM)

Rule-Based Systems

Markov Decision Processes

Conversational Agents

SYSTEM:	Welcome to LUNA. Good day, I am Paola.		
	How may I help you?		
USER:	Eh, Sorry. I have a problem with the printer.		
ASR	And I am sorry a problem with the printer		
SLU	Concept	Value	Conf
	conjugation	and	0.725
	problem	a_problem	0.731
	computer_ component Hardware	with_the _printer	0.718
CL-R	Label: Cl_Printer_Problem; Confidence: 1		
DM	 Infer subclass_Cl_Printer_Problem 		
	Inferred Class == CL-R Label		
	3. CLASS LABEL ONLY		
	4. VERIFY Problem Class		
SYSTEM:	You have a problem with your printer. Do you confirm?		
SYSTEM:	Thank you, wait in line. An operator will assist you with your Lexmark printer problem!		

Figure 1: Example dialogue translated to English

Conversational Agents

Observations

- + Interpretation
 - + Uncertainty
 - + Decisions
 - + Interaction
- = Experience

Evaluation

- How good are machines?
 - Accomplishing tasks
 - Acceptance by the users, by the network
 - Life Span (Evolve over time)
- "Research Systems are difficult to evaluate while Commercial systems are ea\$y to evaluate " (Paek, 2007)

DEMOS

Conclusion

- There are Q&A machine tasks which will give (partial) benefits
- Machines may fulfill (social) roles
- The ultimate goal is to understand the collaborative interaction of machine/human agents
 - Language
 - Interaction Model
 - Social Equation