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ABSTRACT

In context-aware computing, Human Activity Recognition
(HAR) aims to understand the current activity of users from
their connected sensors. Smartphones with their various
sensors are opening a new frontier in building human-centered
applications for understanding users’ personal and world
contexts. While in-lab and controlled activity recognition
systems have yielded very good results, they do not perform
well under in-the-wild scenarios. The objective of this paper
is to 1) Investigate how audio signal can complement and im-
prove other on-board sensors (accelerometer and gyroscope)
for activity recognition; 2) Design and evaluate the fusion
of such multiple signal streams to optimize performance and
sampling rate. We show that fusion of these signal streams,
including audio, achieves high performance even at very low
sampling rates; 3) Evaluate the performance of the multi-
stream human activity recognition under different real end-
user activity conditions.

Categories and Subject Descriptors

I.5.4 [Pattern Recognition]: Applications—Signal pro-
cessing ; H.1.2 [Information Systems]: User/Machine Sys-
tems—Human factors

Keywords

Human Activity Recognition; Signal Fusion; Smartphone
Sensing

1. INTRODUCTION
In context-aware computing, Human Activity Recognition

(HAR) aims to understand the current activity of users from
their connected sensors. Portable sensors platforms are ei-
ther wearable or smartphone-based. In the first case, wear-
able computers are designed to deliver target signals such as
Heart Rate, Skin Temperature, Galvanic Skin Response. In
the second case smartphone platforms are usually designed
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to support sensors such as gyroscope, accelerometer, micro-
phone. These sensors can be used for understanding the
user’s activity which can provide us with contextual infor-
mation about the user’s present state. Knowing whether a
user is sitting or walking or commuting can significantly af-
fect human-computer interaction. Activity Recognition has
been used in various fields from monitoring the elderly [13]
to providing contextual recommendations [2].

Activity recognition systems can be classified as vision
based, sensor based, or a fusion of the two. While vision
based systems use external cameras [16] to monitor the users
and hence are limited in their application scenario, sensor
based systems are usually wearable and can monitor users
in more unconstrained environments. Till recent years in
most sensor-based approaches, users had to attach multiple
dedicated motion sensors [11] to various parts of the body
such as legs, arms, and waist. While such systems have been
able to achieve high recognition performances, they require
elaborate set up and can be uncomfortable to wear and hence
are not very suitable for long-term monitoring.

The recent proliferation of smartphones with their plethora
of sensors have opened up a new frontier in context aware hu-
man computer interaction. Most modern smartphones have
embedded sensors such as microphone, camera, accelerom-
eter and gyroscope. Accelerometer and gyroscope sensors
have been successfully used to detect human activity [1],
understand human mobility patterns [4], and monitor Ac-
tivities of Daily Living [17]. Scientists have also exploited
the microphone on smartphones for daily activity recogni-
tion. The SoundSense [10] project used the microphone on
a smartphone for detecting and modeling sound events in
everyday life. Bieber et al [3] combined the accelerometer
and microphone sensors for detecting everyday activities.
Schuller et al in [15] used the microphone of a smartphone
for acoustic geo-sensing to automatically determine a cy-
clists route.

However, smartphone sensors are not robust, and perfor-
mance of a single-sensor based classification systems leads
to sub-optimal and non-robust performances. The quality
and response of on-board accelerometer and gyroscope sen-
sors vary across manufacturers and devices. Certain smart-
phones do not have dedicated gyroscope hardware, and im-
plement it in software propagating errors from accelerometer
into gyroscope readings. The accelerometer performance for
activity recognition task degrades rapidly when the user is
playing a game on the smartphone or using an application.
Similarly, as reported in [10] audio data cannot be the sole
source of information when the phone is in a backpack or the
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Figure 1: The process diagram. The embedded smart-
phone sensors record data and stream them to the server
where pre-processing, feature-extraction and alignment,
and classification steps are performed.

user is on a call. The solution is to use multiple weak signals
and combine them to improve the recognition of a user’s ac-
tivity state. Combining multiple sensors can also lead to op-
portunistic sensing, thus improving the energy consumption
of the phone by smart decisions on turning on/off sensors at
appropriate times.

Proper evaluation of an activity recognition system is an-
other challenge. Although activity recognition using smart-
phone data is a popular research field, very few publicly
available corpora have raw data available. Even then, most
of the corpora were created under controlled environments
with static phone placements, or scripted activities where
the user does not otherwise use the smartphone during the
data collection. Therefore we carried out our own data col-
lection on the Android and iOS platforms in a naturalistic
settings. We also collected a smaller “stress-test” corpus
where the data was collected while the participants were
actively using the phone 1.

2. DATA COLLECTION
Two sets of data collection were performed to the hy-

potheses. Each experiment involved 15 (9 male and 6 fe-
male) participants. Participants varied in age between 25
and 40. The devices used were smartphones running an-
droid 2 (10 participants) and iOS3 (5 participants) oper-
ating systems. Participants were located in various cities
in Italy, Spain, and India, thus providing our data a wide
variability. While a separate application was developed for
each platform, both applications had the same functional-
ity and recorded data from the same set of sensors. The
applications sampled the tri-axial accelerometer sensor, gy-
roscope sensor, location sensor, and microphone during the
data collection phase. The tri-axial accelerometer and gy-
roscope data was recorded at the rate of 40 Hz, and audio
was recorded with a 8 KHz sampling rate. Location data
was collected at the rate of 1 sample per 5 minutes, and was
used only for validation and was not a part of the activity
recognition process. Also, the participants often turned off
location service on their phone to decrease power consump-
tion.

The first data collection was a controlled scenario where
the participant did not interact with the phone during the
1The data is available for research purpose only. Please
contact http://sisl.disi.unitn.it/
2version 4.0 and higher
3iOS 6 and higher

length of the experiment. Data was collected for six activ-
ities. They are: Walking, Standing, Sitting, Driving, Trav-
elling by bus, and Travelling by train. The data collection
protocol involved the participant launching the application
before starting an activity, marking the activity start point
on the application, and going on with the activity, finally
marking the end when the activity was over. Participants
were free to carry the phone as they wanted, but had to an-
notate the phone placement (pocket, purse, in hand, etc) at
the start of the activity using a multiple choice drop-down
in the application. The participants were asked to upload
the data to our servers at the end of the day. From our data
we observe that in majority of the cases, the phone was car-
ried on the body (front or back trouser/jacket pocket), with
3 instances of the phone being placed in the purse. We ig-
nored two instances where the participant was sitting and
the phone was kept on the table.

The participants were free to delete sessions in case there
was any undesired characteristic to the data. This could in-
clude personal data (audio,location) which the participants
did not wish to share.

We collected approximately 31.6 hours of data (See Ta-
ble 1), with each individual activity session ranging from 5
minutes (mostly walking) to 1 hour (commuting).

Walking Standing Sitting Driving By Bus Train
4.12 8.31 8.23 3.13 2.19 5.12

Table 1: Activity Distribution in hours for normal activ-
ities. The participants placed the phones in pre-defined
positions and did not interact with the phone during the
experiment. Reported numbers are in hours.

Walking Standing Sitting By car By Bus Train
0.32 1.21 3.23 2.19 2.47 1.3

Table 2: Activity Distribution for noisy activities. The
participants were actively using their phones(playing
games,texting or typing emails) during this experi-
ment.Reported numbers are in hours.

For the second data collection, our goal was to collect
data while the participants were actively using the phone.
Most activity recognition experiments have low performance
in real scenarios because they ignore the fact that people
interact with their smartphones. During this data collection,
the participants were asked to play games or type email or
text messages for the duration of the data collection. We
replaced the driving scenario with Travelling by car during
this experiment. Approximately 10 hours of data (See Table
2) was collected for this scenario.

3. EXPERIMENTS AND RESULTS

3.1 Feature Extraction
To remove unwanted noise from the beginning and end of

each activity session, we remove the first and last N seconds
of the data. N was taken at T/10 seconds with a max value
of N=30 seconds where T was the duration of the activity
session. We only consider sessions which lasted at least 5
minutes for our experiments.

We divide each(Acc, and Gyro) signal channel into a 3 sec-
ond sliding window with 50% overlap which has been shown
to be effective [1, 14] window size for best performance in
activity recognition using smartphones.



3.1.1 Accelerometer and Gyroscope
Accelerometer and Gyroscope each have 3 axes x,y,z. We

first compute the acceleration magnitude, given by:

Anorm =
√

Ax
2 + Ay

2 + Az
2

Now for each of the x, y, z, axes and norm of the ac-
celerometer and gyroscope data we extract standard features
for each 3-second window. We calculate the mean, standard
deviation, min, max, number of peaks, number of zero cross-
ings, inter-peak distances, etc for each of the accelerometer
and gyroscope axes.

3.1.2 Audio
We use the same window size for processing and extracting

features from the audio signal. While extracting features,
we segment the audio stream into small uniform frames.
Standard frame-sizes for audio processing lie between 25-
46 milliseconds. In our case we use a 23 milliseconds half-
overlapping subframes of audio as used by McKinney et al
[12].

For the audio signal, we use Opensmile [7] to extract fea-
tures. The following are the main features for each window:

1. Zero crossing rate - ZCR is defined as the number of
time-domain zero-crossings within a frame.

2. RMS Energy - We use the Simple Moving Average
of the mean, standard deviation, skewness, max, min,
and range of the RMS energy of each window.

3. MFCCs which are very commonly used in Speech and
Speaker recognition, have been recently used for recog-
nition of environmental Sound [5]. We use the Sim-
ple Moving Average of the mean, standard deviation,
skewness, max, min and range of 12 MFCCs for each
window.

Durrent et al. [6] defines sensor fusion configuration as
complementary if the sensors do not directly depend on each
other. While older smartphones use a software gyroscope,
modern smartphones (which were used for our experiments)
have a dedicated gyroscope chip. So in our experiment we
treat the sensor channels as complimentary and use the ab-
solute time for each sensor event (recorded during our data
collection) to align the data. We perform a feature-level
fusion (early fusion) of the different streams by concatenat-
ing the time-aligned feature sets before the learning stage.
For each classification experiment we perform feature-vector
normalization before training. For each window, all feature-
vectors form a m × n matrix where m is the window size ×

sampling rate for that window and n is the length of each fea-
ture vector. For each feature fij in the feature vector where
i=1 . . . n is the number of the feature ,and j is the jth row
we normalize the feature using:

fij =
fij −Min(fij)

Max(fij)−Min(fij)
, i = 1 . . . n; j = 1 . . .m

3.2 Classification and Results
We used the WEKA machine learning toolkit [8] to test

different classifiers using the above normalized features. First
we used the data from the first experiment with the highest
sampling rate to choose a classifier. We tested three dif-
ferent classifiers : Support Vector Machines, J48 decision
trees, and random forests. Random forests provided us with
the best F-measures (see Table 3), hence further classifica-
tion was done with random forest for the different sets of

experiments. For all classification experiments results were
obtained by 15-fold (leave-one-subject-out) cross validation
where each fold corresponds to the data for one subject.
We used the full feature set with data sampled at 40 sam-
ples/second.

Signal Acc Gyro Audio
Acc
Gyro

Acc Gyro
Audio

SVM 0.85 0.79 0.79 0.87 0.91
Decision Trees 0.85 0.82 0.83 0.85 0.90
Random Forest 0.91 0.84 0.85 0.93 0.98

Table 3: Average F-measure of 15-fold (one-fold-per-
user) cross validation for the classification algorithms
tested with the full feature set with data sampled at 40
samples/second and a 3-second sliding window

A major problem with using sensors is that polling them
continuously can lead to power drain. One of the goals of our
experiment was to determine how gracefully the recognition
quality decreases when the sampling rate is decreased.
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Figure 2: Effect of stepwise decrease of sampling rate
(from 40 to 1 samples/sec) on F-measure. We see that
adding audio leads to better accuracy at lower sampling
of acc and gyro sensors.

We carried out LOSO cross-validation classification ex-
periments using random forests. We experimented with dif-
ferent window sizes and a 3-second window was confirmed
to be the best. Krause et. al in [9] showed that sampling
rate of sensors has a direct effect on the battery life of a
wearable device and decreasing sampling rate lowers power
consumption. We performed stepwise downsampling of the
accelerometer and gyroscope signals from 40 sample/sec to
1 sample/sec. From Figure 2 we see that accelerometer
performance(F-measure) drops from 0.91 to 0.69 when the
sampling rate is decreased from 40 to 1 sample/sec. Gy-
roscope performance (F-measure) drops more steeply from
0.84 to 0.49 in this range. A combination of Accelerometer
and Gyroscope fairs comparatively better, degrading from
0.93 to 0.77. Adding audio signals from the microphone not
only helps to provide better results at higher sampling rate
(0.98 at 40 samples/sec), but also helps to balance the drop
to only 0.89 at the lower end. However, we did not exper-
iment with different sampling rates of the audio because of
the limitation of the audio format for recording. AAC audio
coding, which is the standard audio codec on both iOS and
android does not support compression below 8 kHz. So all
experiments with audio were carried out at this sampling
rate.

From Table 4 we see that under controlled experimental
conditions, accelerometer performance can be a good mea-
sure for understanding a participant’s current motion pro-



Signal
Avg

precision
Avg

Recall
Avg

F-measure
Acc 0.90±0.02 0.91±0.03 0.91±0.03
Gyro 0.83±0.08 0.84±0.07 0.84±0.08
Audio 0.85±0.06 0.86±0.07 0.85±0.07

Acc Gyro 0.93±0.06 0.92±0.06 0.93±0.06
Acc Gyro Audio 0.98±0.05 0.97±0.05 0.98±0.05

Table 4: Average Precision, Recall and F-measure us-
ing random forests. For this experiment the participants
were requested to place the phones at pre-defined loca-
tion and not use it during the experiment

Signal
Avg

precision
Avg

Recall
Avg

F-measure
Acc 0.75±0.13 0.77±0.10 0.76±0.11
Gyro 0.70±0.17 0.74±0.16 0.72±0.16
Audio 0.85±0.08 0.85±0.09 0.85±0.08

Acc Gyro 0.79±0.13 0.80±0.12 0.80±0.13
Acc Gyro Audio 0.86±0.11 0.88±0.11 0.87±0.12

Table 5: Average Precision, Recall and F-measure of
sensor channels using random forests. For this experi-
ment the participants were actively using the phone dur-
ing data collection

file. In this experiment the participants were expected not
to interact with the phone for the duration of the experi-
ment. While post-processing we ensured that we removed
all instances where the screen of the phone was unlocked for
durations longer than 10 seconds during a data collection
session since it indicated that the participant was using the
phone. However, since the participants were free to carry
the phones as they wanted, this data collection is less con-
trolled than other controlled data collection [1, 4] for activity
recognition.

Table 5 shows the recognition results when the partici-
pants were actively using the device phone while performing
an activity. Average precision for single sensor channels is
lower than in the controlled experiments reported in Table
4 . The accelerometer and gyroscope individually perform
lower (F-measures 0.76 and 0.72 respectively) than in the
controlled scenario (F-measures 0.91 and 0.84 respectively).
While combining the two sensor streams improves the recog-
nition rates (F-mseasure 0.80), combining the motion sen-
sor channels with audio achieves the best results (F-measure
0.87) under this scenario.

4. CONCLUSIONS
In this paper we have explored the use and combination

of multiple weak smartphone sensors. We show that while
smartphone sensor quality drops heavily during real-world
usage, combining multiple signal streams can lead to better
recognition results. We also exploit the less-used microphone
sensor on a smartphone. We show that by leveraging audio
features we can achieve high results. By combining audio
features with other weak sensor features we can come up
with a robust activity recognition scheme.
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