978-1-4244-5480-8/09/$26.00 © 2009 IEEE

The Exploration/Exploitation Trade-off in
Reinforcement Learning for Dialogue Management

Sebastian Varges, Giuseppe Riccardi, Silvia Quarteroni, Alexei V. Ivanov

Department of Information Engineering and Computer Science
University of Trento
38050 Povo di Trento, Italy

{varges|riccardi|silviag|ivanov}@disi.unitn.it

Abstract—Conversational systems use deterministic rules that
trigger actions such as requests for confirmation or clarification.
More recently, Reinforcement Learning and (Partially Observ-
able) Markov Decision Processes have been proposed for this
task. In this paper, we investigate action selection strategies for
dialogue management, in particular the exploration/exploitation
trade-off and its impact on final reward (i.e. the session reward
after optimization has ended) and lifetime reward (i.e. the
overall reward accumulated over the learner’s lifetime). We
propose to use interleaved exploitation sessions as a learning
methodology to assess the reward obtained from the current
policy. The experiments show a statistically significant difference
in final reward of exploitation-only sessions between a system that
optimizes lifetime reward and one that maximizes the reward of
the final policy.

I. INTRODUCTION

In recent years, Machine Learning techniques, in particular
Reinforcement Learning (RL), have been applied to the task of
dialogue management (DM) [1], [2], [3]. A major motivation
is to improve robustness in the face of uncertainty, for example
due to speech recognition errors. A further motivation is
to improve adaptivity w.r.t. different noise levels/recognition
environments, user behaviour and application contexts. The
Reinforcement Learning framework [4] is attractive because
it offers a statistical model representing the dynamics of the
interaction between system and user. This is in contrast to
the supervised learning approach of learning system behaviour
based on annotated corpus [5], [6]. To explore the range of
dialogue management strategies, a simulation environment is
required that includes a simulated user [7] if one wants to
avoid the prohibitive cost of using human subjects.

In this work, we investigate several aspects of action selec-
tion in RL for dialogue management. We use a domain for
which we also built a more conventional dialogue manager
to obtain, for example, an action set, a set of possible user
responses, and dialogue ending options that are realistic and
appropriate for a working SDS. We investigate the influence
of the action selection strategy on learning of dialogue man-
agement policies. This issue, although studied in the general
context of Machine Learning [8], has received little attention
in RL for dialogue management. The action selection strategy
is a key factor for determining the exploration/exploitation
trade-off: to optimize the long-term reward and populate its

479

policy with expected values, the learner needs to explore
untried actions to gain more experience, and combine this
with exploitation of the already known successful actions to
also ensure high reward. A Reinforcement Learner trades off
short-term rewards, i.e. rewards received at the end of each
dialogue session, against long-term rewards in the form of
values. There is no distinction between training and testing
since the learner receives rewards in all sessions. However, we
argue that there is a distinction between lifetime reward, i.e.
the overall reward accumulated over the learner’s lifetime, and
the final short-term session reward obtained when exploiting
the policy after optimization has ended.! The distinction of
life-time vs final short-term reward is directly relevant to the
choice of optimization settings of the RL system for simulated
vs human user interaction. To measure a learner’s progress, we
propose to use interleaved exploitation sessions that expose the
reward obtained from the current policy, and we investigate the
effect of these sessions if they are used to update the policy.

This paper is structured as follows: after a brief introduction
to RL for dialogue management (sec. II), we describe our RL-
DM (sec. III), including state representation, action set, reward
function and user simulation. After briefly describing the more
conventional SDS that was used for a data collection (sec.
IV), we describe interleaved exploitation (sec. V) and report
on a series of simulation experiments (sec. VI), including the
exploration/exploitation trade-off (sec. VI-A) and basic search
properties of the RL learner (sec. VI-B). We conclude this
paper with a discussion in section VIL.

II. REINFORCEMENT LEARNING FOR DIALOGUE
MANAGEMENT

Dialogue management is modeled as taking a decision
about an action a at time t in a dialogue state s; given an
observation o of the user input, and receiving a (possibly
delayed) reward r. State s is the information state of the
dialogue system with an explicit Markov assumption about
the context window. In a Markov Decision Process (MDP), no
uncertainty about the user input is assumed. This user input is

ILifetime reward and values both represent long-term aspects of learning
with rewards but are quite different in nature. For example, values pertain to
the expected reward of state-action mappings (see also section II) whereas the
lifetime reward simply sums over all sessions.

ASRU 2009

— Qfsyay)
POLICY: - Qlsyay)

I Q(Spal)
Q(531a4)
. policy
policy update
lookup
reward
computation
Turn t, Turnt, Turn t,

x
start ais,”

7
state %,

ass San . NS
A3 Un N O<:....... N,
; CY
~~——— au s, ~3<l,s U S3n . an,s
Qa4 - -
\\
'S San .
s
usergoal Us state space Si 5.n .
state space Sy Sen . state space S
’ .
N
N

Fig. 1. MDP Dialogue Manager

assumed to unambiguously refer to the system state, i.e. only a
single (dialogue) state hypothesis is maintained. In a Partially
Observable Markov Decision Process (POMDP), ambiguity
in the user input is taken into account by accepting an N-
best ‘list” of Spoken Language Understanding (SLU) results,
i.e. concept-value pairs with their confidences. This yields an
(often large) number of parallel state hypotheses.

The RL-DM maintains an internal data structure called a
policy to keep track of the values (accumulated rewards) of
past state-action pairs. The goal of the learner is to optimize
the long-term reward by maximizing the ‘Q-Value’ Q™ (s;,a)
of a policy 7 for taking action a at time t. In a POMDP, the
policy consists of a mapping from distributions over states to
actions. Since an analytic solution to finding optimal -Values
is not possible for realistic dialogue scenarios, Q™ (s, a) is
estimated by dialogue simulations.

III. RL-DM FOR A REAL-WORLD TASK

The RL-DM implemented in this work is shown in figure
1: at each turn at time ¢, the incoming N user act hypotheses
an., split the state space S; to represent the complete set of
interpretations from the start state (N=2). A belief update is
performed resulting in a probability assigned to each state. The
resulting ranked state space S; is used as a basis for action
selection. In our current implementation, belief update is based
on probabilistic user responses that include SLU confidences
(see below). Action selection to determine system action a, s
is based on the best state (m is a counter for actions in action
set A; see section III-B). In each turn, the system uses an e-
greedy action selection strategy to decide probabilistically if to
exploit the policy or explore any other action at random. (An
alternative would be softmax, for example.) At the end of each
dialogue/session a reward is assigned (section III-C) and policy
entries are added or updated for each state-action pair involved.
These are stored in tabular form. The conditioning of action

decisions on individual states at the policy level implies that
the implemented RL-DM is an MDP. The ranked state space
is a step toward handling uncertainty (see [9], for example).
We perform Monte Carlo updating similar to [1]:

Q:(s,a) = R(s,a)/n+ Qi1 - (n—1)/n, (1)

where n is the number of sessions, R the reward and () the
estimate of the state-action value.

At the beginning of each dialogue, a user goal Ug (a set
of concept-value pairs) is generated randomly and passed to
a user simulator. The user simulator takes Ug and the current
dialogue context to produce plausible SLU hypotheses. These
are a subset of the concept-value pairs in Ug along with a
confidence estimate bootstrapped from a small corpus of 74 in-
domain dialogs. We assume that the user ‘runs out of patience’
after 15 turns and ends the call.

A. State Representation

The application domain is a tourist information system for
accommodation and events in the local area. The domain of the
trained DMs is identical to that of a rule-based DM that was
used for a data collection with human users (section IV-B),
allowing us to compare the two directly.

The state of the RL-DM keeps track of the SLU hypotheses
in the form of domain concepts. There are 8 of these in
the application domain: main activity, location, star rating of
hotels, duration, start and end day and month. Furthermore,
there are 2 ‘pseudo-concepts’ for user-initiated acts: transfer
to the operator and dialogue ending. The state representation
of the DM keeps track of the actual values. In policy space,
we abstract concept values into ‘KNOWN/UNKNOWN’, thus
increasing the likelihood that the system re-visits a dialogue
state which it can exploit. The actual policy state space is thus
of size 28 = 256.

B. Action set

The system selects actions that are relative to the current
belief state. We distinguish 3 types of actions (size of action set
|A| = 26 overall): concept questions, clarification questions,
and non-linguistic actions such as database queries. There are
more concept questions than domain concepts: a question for
the start date expects both a month and a day concept from
the user. Alternatively, these concepts can be obtained by sep-
arate question-start-day and question-start-month
actions. (The tutorial day-month dialogue of [1] is thus a
subtask of our domain). For each action, we specify the
expected concepts that the DM is able to recognize at the next
turn according to a domain ontology. This is motivated by the
Automatic Speech Recognition (ASR) of the data collection
system (section IV-A). Hence, the probability of any other
concept occurring is 0, regardless of the actual user simulator
(section III-D).

Clarification questions verify a specific concept value. Since
in many policy state representations these values will be
UNKNOWN, the question arises if clarification questions should
be possible in these cases. One option is to constrain the set of

480

possible actions (given the current best state) manually. This
results in a hybrid approach that integrates rule-based knowl-
edge with RL learning [10]. In the start state, for example, the
system may only have the opening prompt (e.g. ‘How May I
help You?’, HMIHY) available. This effectively constrains the
search space of RL-learning since there are fewer actions to
explore. However, it also introduces additional (and potentially
error prone) manually provided knowledge into the learning
process. In this work, we explore an alternative: we always
make clarification actions available. This is possible without
the need for special-purpose rules since the user simulator
answers automatically negatively if an UNKNOWN value is
verified but the user goal actually contains a concept value.

Informed by the action set of the data collection system
(section IV), we define three actions that result in an ‘end
state’: passing the call to an operator, ending the call system-
side, and performing a database lookup.

C. Reward Function

The reward function has a crucial influence on learning. A
key ingredient of any objective function is the correctness of
the acquired concept values. Furthermore, the interaction cost,
often measured by the number of turns, needs to be taken
into account. Additionally, we consider the cost of ending the
dialogue session. Reward R is thus defined as

R:wlM—wQS—wgl—w4E, (2)

where M is the number of matches and S the number of
mismatches between user goal and DM state representation.
Note that we need to compare actual values rather than the
abstracted ones of policy space. [is the interaction cost and
E the cost of the specific dialog ending. Defining a reward
function and assigning empirically-based weights is a research
topic in its own right [11]. Based on our experiences, we
amplify the benefits of matches by a factor of 10 and assign a
database lookup a cost of 5, operator transfer a cost of 10 and
a hangup carries a cost of 20. Hangups, i.e. sudden dialogue
endings, can occur as a result of a system action (section III-B)
and also as a result of a user hangup, which is defined by the
user model (section III-D). Thus, an end state can be reached
by 3 system actions and 1 user action overall. An optimal
session for a hotel enquiry receives a reward of 73.5. (The
cost function is sufficiently simple to calculate this manually.)

D. User Simulation

In order to conduct thousands of simulated dialogues, the
DM needs to deal with heterogeneous but plausible user input.
For this purpose, we have designed a User Simulator (US)
which bootstraps likely user behaviors starting from a small
corpus of 74 in-domain dialogs, acquired using the rule-based
version of the SDS (section IV). The task of the US is to
simulate the output of the SLU module to the DM, hence
providing it with a ranked list of SLU hypotheses. At each
turn, the US mines the previous system dialog act to obtain the
concepts required by the DM and obtains the corresponding
values (if any) from the current user goal.

The output of the user model is passed to an error model
that simulates “noisy channel” recognition errors based on
statistics from the dialogue corpus. These affect concept values
as well as other dialogue phenomena such as Nolnput,
NoMatch and HangUp. If the latter phenomena occur, they
are propagated to the DM directly; otherwise, the following
US step is to attach plausible confidences to concept-value
pairs, also based on the dialogue corpus. Finally, the concept-
value pairs are combined in an SLU hypothesis and, as in the
regular SLU module, a cumulative utterance-level confidence
is computed, determining the rank of each of the n hypotheses.
The probability of a given concept-value observation 0,41 at
time ¢ + 1, given the chosen system act at time ¢, a,; and
the known session user goal g,,, is obtained by combining the
error model and the user model:

P(0t+1|as,tvgu) = P(0t+1|au,t+1) : P(au,t+1|as,t;gu);

where a,, ;41 is the true user action. However, in the presented
experiments (section VI) we do not use an error model. The
probabilistic user model is used to weigh the selection of the
user’s response. The user goal determined by the simulation
environment is used to ensure consistent responses from the
simulated user, i.e. repeated questions for the same concept
yield identical values.

IV. DATA COLLECTION BASELINE SDS

We also developed a more conventional SDS for interaction
with human users to obtain training data from human-system
interaction.

A. ASR and SLU

The data collection system uses a VXML platform as an
interface to ASR and TTS functionality. Speech recognition in
this version of the system is grammar-based; dialogue manager
actions — both of the RL-DM and the rule-based DM (section
IV-B) — are associated with specific grammars.

The SLU module receives the top 10 ASR interpretations
as produced by the VXML grammars and is responsible for
communicating a ranked list of the top 2 interpretations to the
DM. As VXML grammars used for ASR already recognize
concepts, the objective of the SLU module is to normalize
concept values (e.g. numbers) and to estimate concept-level
confidences. These are computed as the average ASR confi-
dence of the words underlying each concept; the final ranking
in the SLU output depends on an utterance-level confidence
score which is in turn the average concept-level confidence for
all the concepts in the current interpretation.

B. Rule-based Dialogue Management

The rule-based dialogue manager works in two stages: re-
trieving and preprocessing facts (tuples) taken from a dialogue
state database, and inferencing over those facts to generate a
system response. We distinguish between the ‘context model’
of the first phase — essentially allowing more recent values for
a concept to override less recent ones — and the ‘dialog move
engine’ of the second phase. In the second stage, acceptor

481

rules match SLU results to dialogue context, for example
perceived user concepts to open questions. This may result
in the decision to verify the application parameter in question,
and the action is verbalized by language generation rules. If
the parameter is accepted, application dependent task rules
determine the next parameter to be acquired, resulting in the
generation of an appropriate request.

The system architecture and further details are described in
[12].

V. INTERLEAVING EXPLORATION AND EXPLOITATION

Action selection in Reinforcement Learning can either try
to exploit the policy to carry out the currently believed best
action, or explore untried actions w.r.t. the current belief
state. This choice is determined by the action selection
strategy which is thus crucial for determining the explo-
ration/exploitation trade-off. Generally, a certain amount of
exploration always takes place: even if the system decides to
exploit, if the current state has not been visited before, the
system has no choice but to fall back on exploration. In this
work, we use an e-greedy action selection strategy.

To measure a learner’s progress, we propose to use inter-
leaved exploitation sessions that expose the reward obtained
from the current policy, and contrast this with the reward
obtained from those sessions that mix exploration and exploita-
tion. We thus obtain three reward measures overall for each
simulation experiment: the average reward of all sessions, and
separate reward averages for exploitation-only sessions and
mixed exploration/exploitation sessions. This will be shown
in section VI. The exploitation-only sessions can serve to
estimate the reward obtained with human user interaction
if simulation were to stop at this point, for example. The
mixed exploration/exploitation sessions show how the learner
performs while populating the policy with values — the rewards
of these sessions could be important to decide if human
subjects should be involved, for example. There is also an
option to update the policy during exploitation-only sessions.
If no updating is performed, the interleaved exploitation-only
sessions are purely for observational purposes and do not alter
the value function.

Every RL system obviously has to balance exploration and
exploitation. However, the previous work we are aware of
usually presents single reward measures, often in the form
of average rewards, e.g. [8], [13]. In many cases, previous
work does not elaborate on the chosen exploration/exploitation
trade-off although this has a high impact on learning. We thus
cautiously suggest that separating rewards to expose different
aspects of learning is a novel experimental method.

VI. SIMULATION EXPERIMENTS

We conducted several simulation experiments of 10 sim-
ulation ‘runs’ each. For each run, 1000 dialogue sessions
were conducted. For each dialogue, system-user interactions
are simulated up to maximally the user patience level, i.e. 15
turn pairs. We investigated both the search behavior of the

learner and the resulting dialogue strategies. The experiments
employed the RL-DM described in section III.

A. The exploration/exploitation trade-off

The parameter we investigated is the impact of the action
selection strategy, more precisely the probabilistic exploitation
rate in e-greedy action selection, for e= 0.0, 0.01, 0.2, 0.4, 0.7,
1.0.2

Figure 2 shows the average rewards for 10 simulation runs
of 1000 sessions each, with € = 0.7 (left figure) and € = 0.2
(right figure). Each figure shows three reward lines that belong
to the same system: each dot on the bold line ‘a)’ shows the
average reward for 100 sessions (e.g. session 1-100, 101-200
etc.) in 10 runs, i.e. it averages 1000 rewards.

To measure the reward of the current policy at different time
points, we switched to exploitation-only sessions at every 10th
session. Lines labeled ‘b)’ show the reward of these interleaved
exploitation sessions: this is the best action choice the learner
can make at a given session number (10th, 20th, 30th etc).
Each dot is the average of 100 rewards (10 rewards for each
window of 100 sessions, for 10 runs).

Lines labeled ‘c)’ show the rewards during e-search, i.e.
while populating the policy. Each dot represents the average
of 900 rewards, for example for session numbers 1-9, 11-19,
21-29, etc. (90 rewards for each window of 100 sessions, for
10 runs). The vertical lines are error bars that indicate the 95%
confidence interval.

As figure 2 shows, the overall reward increases for both ex-
periments (bold lines). However, as the interleaved exploitation
sessions show, with e = 0.7 learning is faster and a higher final
exploitation reward is achieved. On the other hand, the overall
average reward for ¢ = 0.2 is larger. The same is true for
the mixed exploration/exploitation sessions used to populate
the policy. The overall reward is closer to the mixed session
line because it contains a larger component of mixed session
rewards than exploitation-only rewards.

Table I shows average final rewards of exploitation sessions
(‘R Final’), percentage of optimal strategy found (‘% Opt.
Final’), and the overall average lifetime reward per session (‘R
Lifetime’) and overall (‘> R Lifetime’) excluding exploitation
sessions for two types of simulations: one that uses the
interleaved exploitation sessions for updating the policy (table
I, left), and one that skips updating (table I, right). In the
former case, the actual exploration rate is reduced, e.g. to
0.9-0.7 = 0.63 for e=0.7.

Table I shows that without exploration (¢ = 0.0) average and
lifetime rewards remain low. Using only exploration (e = 1.0)
yields low lifetime reward and is not likely to result in optimal
final policies. In between the extremes, there seems to be a
range of exploration rates for which high final rewards can
be achieved. However, while ¢ = 0.7 makes finding optimal
final rewards likely (see also figure 2 left), it yields relatively
low lifetime reward. In contrast, ¢ = 0.2 achieves maximum

>The value of 0.01 was chosen because in a pilot experiment very little
exploration proved sufficient.

482

80 80
F - - --Q@
70F I 5 0] 70k |
6or I g 4 1 60+ |
50+ 7 4 501 |
°
40-] £ 40t]
g 9]
/ o
3o0r ¢ 300 1
I--%
20+ 4 20F i
—&—a) Overall Reward —&—a) Overall Reward
10 ~O- D) Interleaved Exploitation 10- ~O- b) Interleaved Exploitation |
- % - ¢) Mixed Exploration/Exploitation £=0.7| - % — ¢) Mixed Exploration/Exploitation ¢=0.2
0 1 1 1 1 L L I L
0 200 400 600 800 1000 % 200 400 600 800 1000
Sessions Sessions
Fig. 2. Exploration/exploitation trade-off for simulated dialogue sessions for RL systems with ¢ = 0.7 (LEFT) and ¢ = 0.2 (RIGHT). Bold lines with

squares ‘a)’ show the overall average reward of 10 simulation runs. Lines with circles ‘b)’ show average reward of interleaved exploitation sessions only.
Lines with stars ‘c)’ show average reward for mixed exploration/exploitation sessions only. The reward curves ‘b)’ and ‘c)’ in each figure represent different

components of the average reward ‘a)’ of the RL system.

TABLE I
SIMULATION RESULTS FOR DIFFERENT EXPLORATION RATES (€) IN €e-GREEDY ACTION SELECTION: WITH POLICY UPDATING AFTER INTERLEAVED
EXPLOITATION SESSIONS (LEFT) AND WITHOUT (RIGHT).

INTERLEAVED WITH UPDATING INTERLEAVED WITHOUT UPDATING
€ R Final | % Opt. Final | R Lifetime | > R Lifetime || R Final [% Opt. Final [R Lifetime [> R Lifetime
0.0 8.58 0.0 8.51 76631.3 3.40 0.0 3.39 30502.0
0.01 58.65 10.0 41.83 376446.3 52.33 10.0 32.97 296693.0
0.2 64.60 10.0 46.43 417902.0 70.65 30.0 46.73 420512.3
0.4 69.03 20.0 39.18 352608.0 69.05 50.0 35.29 317604.0
0.7 73.43 70.0 22.63 203661.5 71.35 80.0 22.30 200725.0
1.0 58.68 0.0 6.55 58926.5 52.33 10.0 32.97 296693.0

lifetime reward in our experiments but does not achieve the
highest rewards in exploitation-only sessions (see also figure
2 right). As the confidence intervals in figure 2 show, the
difference between the final exploitation-only rewards (lines
‘b’) between the two systems is statistically significant at the
95% confidence interval (see also the discussion in section
VII).

B. Non-monotonicity of reward increase

In many simulation runs, we observe what appear to be
‘glitches’ in the otherwise largely increasing reward, i.e. the
reward is not strictly monotonically increasing. This is an
important property to establish for any search strategy. Upon
closer inspection, the low-reward sessions turn out to repeat
actions or action sequences until the user patience limit.
However, because of the low reward received, the glitches are
immediately corrected, so that the maximal reward returns to
the previous value at the next exploitation session. We find ex-
amples of such temporary glitches in several simulation runs.
They are characterized by repeated actions or action sequences
without reaching a dialogue end state. The experimental results

suggest that the use of exploitation may actually help improve
the current policy: comparing the rewards for ¢ = 1.0 in
table I, i.e. 100% exploration, we find that using interleaved
exploitation sessions for updating increases the final reward.
However, it seems to reduce the overall lifetime reward, and
the effect cannot be observed for all settings of e.

The correcting effect of exploitation should always be avail-
able since for all simulations with € < 1.0 a certain amount
of exploitation takes place. However, in normal operation the
choice of exploration vs exploitation is made for each system
turn rather than the entire dialogue. Thus, it seems likely that
the effect is stronger in exploitation-only sessions.

C. Resulting dialogue strategies

We now look at the actually learnt dialogue strategies as
evidenced by exploitation sessions at the end of simulations.
We observe that even under the same experimental conditions,
different final policies are learnt. For example, for € = 0.40
we obtain the following the action sequence in the final
exploitation sessions:

483

(1) QUESTION-HMIHY
QUESTION-START-DATE
QUESTION-END-DATE
QUESTION-STARRATING
QUESTION-DURATION
DATABASE-LOOKUP

This sequence yields optimal reward given the state repre-
sentation and reward function. Each question is only asked
once, and questions that return two concepts rather than
one are preferred: the HMIHY question wins over individual
activity and location questions, and questions for dates win
over individual day and month questions. The dialogue ends
with a database query that contains all required concepts.
The system avoids clarification actions since these do not
contribute to higher reward in this experiment; we do not yet
use the error model of the user simulator that would make the
use of clarifications beneficial.

It should be noted that a dialogue such as (1) is the
result of interaction with the simulator user, and thus not
the only dialogue the policy can conduct. Inspecting the final
policies, we find that in a state in which only the location is
known, for example, the highest ranked action is typically the
question for activity, or at least a HMIHY question (which
also expects an activity concept). This is in fact the desired
behaviour, which we previously programmed manually into
the rule-based DM (section IV-B): we found that in the data
collection experiments with human users, for the opening
HMIHY question often only the location was recognized,
requiring an additional question for activity (‘Please tell me
what you would like to do in [LOCATION]’).

VII. DISCUSSION AND CONCLUSIONS

Regarding the exploration/exploitation trade-off (section
VI-A) we show that the reward of the final policy and the
overall lifetime reward are not necessarily optimized simul-
taneously. There is a statistically significant difference in the
final exploitation-only reward between the two. Given this,
we suggest the following methodology: simulations should
be conducted with a relatively high exploration rate to find
a policy that maximizes the reward of the resulting policy.
Interaction with human users, in contrast, should optimize
the lifetime reward since this measure directly relates to the
user experience. In our system, we can use policies trained in
simulation for real user interaction with further adaptation, i.e.
policy updating.

More research is needed on setting the exploration rate in
different applications. In a different set of experiments with
a comparable state size (417 vs 256 here) but considerably
smaller action set (4 vs 26 here), an exploration rate of
1% proved sufficient to quickly find an optimal policy. This
suggests that the number of state-action pairs in the policy
may be used as an estimate of the complexity of the learning
task, i.e. |S|-|A], rather than the size of state set |S| alone. It
also suggests that more exploration is needed in more complex
domains.

The policy’s state representation has an obvious im-
pact on learning. Here, we abstracted concept values into
‘KNOWN/UNKNOWN'. This still does not result in exploring
all possible states in the experiments: the average number of
policy state entries for € = 0.6 is 140.5 out of 256 possible
states, for example. However, these are obviously states that
were not visited during the simulation, and they may be
unlikely to occur for a given domain and user model.

The RL-DM learns to ask each question only once, and to
prefer questions that return several concepts (sections VI-C).
In future research we will employ error models in the user
simulations to learn using clarification questions, confidence
thresholds, and reranking of the state space. Furthermore,
we will extend the RL-DM implementation to map complete
belief states to actions rather than ‘best’ states and conduct
user evaluations.

ACKNOWLEDGMENT

This work was partially supported by the European Com-
mission Marie Curie Excellence Grant for the ADAMACH
project (contract No. 022593) and by LUNA STREP project
(contract No. 33549).

REFERENCES

[1] E. Levin, R. Pieraccini, and W. Eckert, “A stochastic model of human-
machine interaction for learning dialog strategies,” IEEE Transactions
on Speech and Audio Processing, vol. 8, no. 1, 2000.

[2] J. D. Williams and S. Young, “Partially Observable Markov Decision
Processes for Spoken Dialog Systems,” Computer Speech and Language,
vol. 21, no. 2, pp. 393-422, 2006.

[3] S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson,
and K. Yu, “The Hidden Information State Model: a practical framework
for POMDP-based spoken dialogue management.” Computer Speech and
Language, To appear, 2009.

[4] R.S. Sutton and A. G. Barto, Reinforcement Learning. An Introduction.
MIT Press, 1998.

[5] R. Higashinaka, M. Nakano, and K. Aikawa, “Corpus-based discourse
understanding in spoken dialogue systems,” in Proc. of ACL, 2003.

[6] D. Griol, L. F. Hurtado, E. Segarra, and E. Sanchis, “A statistical
approach to spoken dialog systems design and evaluation,” Speech
Communication, vol. 50, no. 8-9, pp. 666682, 2008.

[7] J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young, “A Survey
of Statistical User Simulation Techniques for Reinforcement-Learning
of Dialogue Management Strategies,” Knowledge Engineering Review,
vol. 21, no. 2, pp. 97-126, 2006.

[8] S. Whiteson, M. E. Taylor, and P. Stone, “Empirical studies in action
selection with reinforcement learning,” Adaptive Behavior - Animals,
Animats, Software Agents, Robots, Adaptive Systems, pp. 33-50, 2007.

[9] J. Henderson and O. Lemon, “Mixture Model POMDPs for Efficient

Handling of Uncertainty in Dialogue Management,” in Proc. of the

46th Annual Meeting of the Association for Computational Linguistics

(ACL/HLT), Columbus, Ohio, 2008.

J. D. Williams, “The best of both worlds: Unifying conventional dialog

systems and POMDPs,” in Intl. Conf on Speech and Language Process-

ing (ICSLP), 2008.

V. Rieser and O. Lemon, “Learning Effective Multimodal Dialogue

Strategies from Wizard-of-Oz data: Bootstrapping and Evaluation,” in

Proc. ACL/HLT, 2008.

S. Varges and G. Riccardi, “A Data-centric Architecture for Data-driven

Spoken Dialogue Systems,” in Proceedings of IEEE Automatic Speech

Recognition and Understanding Workshop (ASRU), Kyoto, Japan, 2007.

J. D. Williams, “Applying POMDPs to Dialog Systems in the Trou-

bleshooting Domain,” in Proceedings of the HLT/NAACL Workshop

on Bridging the Gap: Academic and Industrial Research in Dialog

Technology, Rochester, NY, USA, 2007.

[10]

(1]

[12]

[13]

484

