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Applications 
•  Call Center Automation 

–  Customer Care 
–  Business Information services (e.g. yellow pages) 

•  Spoken/Multimodal Access to web 
documents and services (e.g. voice portals) 
–  Smart Phones  

•  Interactive in-car navigational systems 
•  Personal Agents 

–  Butler agents, Shopping assistants 
–  Assistants for elderly people or people with disabilities 

•  Consumer Robotics 



Dialog Example 
System  : Hi, This is JD Travel Agent, How May I Help You?

Caller  : Hi, I need a four stars hotel in Trento 

ASR  : I need a for stars hotel in 
SLU  : INFO(0.8)  HOTEL(0.7) 
DM  : Request.Date.CheckIn 

System  : When do you want to check in?

Caller  : I plan to arrive on um May 30 

ASR  : I arrive on May 30 
SLU  : DATE(0.8) 
DM  : Request.DateCheckOut 

System  : When do you want to check out?

Caller  : June 6

ASR  : June  
SLU  : DATE(0.7) 
DM  : Request.DateCheckOut 

System  : Please repeate the checkout date?

Caller  : June 6

ASR  : June  6 
SLU  : DATE(0.9) 
DM  : Confirm.CheckIn,Checkout 
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tim
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Motivation 
•  How to automatically train SDS such that: 

– Minimize the amount of time and 
resources (human and data) 

– Maximize the effectiveness of SDS 
(e.g. task completion rates) 
• wrt to system performance (e.g. ASR and 
Language Understanding errors) 

• wrt to user input and behavior variability 
(e.g. hang-ups, language etc.) 



Rule-Based Systems 
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Markov Decision Processes 
•  MDP:  dialog as sequential decision process 

with transitional uncertainty 
– Maintains one dialogue state s at each time t 
– action at chosen w.r.t state s 

•  POMDP:  adds observational uncertainty 
(ASR, SLU, …) 
– maintains large number of `parallel’ dialogue 

states: the `belief’ 
– action at chosen w.r.t the distribution of states 
– Training: by RL, with user simulations  



State Representation 
an example from tourist domain 

Concept Value Confide
nce 

Rank Recency Verification 
Status 

Activity (n tasks) 0.0 -1.0 1, 2 1, 0 - 
Location (m) positive 
StarRating 1-5 negative 
Month_start 1-12 
Day_start 1-31 
Month_end 1-12 
Day_end 1-31 
Duration 1-90 
Quit-user 1, 0 
Operator-user 1, 0 

…………. … …. …. ….. ….. 
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Legend 
au         user act at time t 
as        system action at time t 
St       system state space at time t 
sr,t   system state of rank r at time t 
Ut1          user state at turn n                   

sk,am      (Policy):  action m at state k 
Q*k           (Policy):  value of  sk,am:    



Reward function 
Reward R =  w1 M - w2 N - w3 D -w4 E 

   where  
     M: #matches user goal concepts – system concepts 
     N: #mismatches incl. unknown 
     D: duration in turns 
     E: ending cost 

Factors and Weights used in demo system: 
 w1:  10,   w3: 0.25,   all other weights =1 
Ending costs E:  operator 10, hangup/quit 20, DB 5 



Value update in policy 
(Following Levin et al. 2000:) 
n= number of sessions 
C= cost 
Q*= estimate of optimal state-action value 

Qt*(s’,a’) = C(s’,a’) / n  +  Qt-1* x (n-1)/n 



Exploration vs Exploitation 
•  Current dialog systems do not explore, 

rather exploit hardwired and expensive 
heuristic strategies. 

•  Conversational Agent needs to find 
trade-off between exploration and 
exploitation reward 

•  Most natural (wrt cognitive process) 
strategy 



Adaptive Learning 
•  Action selection strategy 

–  Softmax (τ): actions selected according 
estimated probability distribution (e.g. Gibbs 
Distribution) 

–  Greedy (ε):  exploitation is selected with 
prob ε and exploration with prob (1-ε).  

• Example 
– Adaptive Spoken Dialog System seeking to 
acquire two attribute slots ( day and  month) 

€ 

eQt (a)/t

eQt (b)/t
b
∑



0% exploration, 100% exploitation:    
Does not find optimal dialogue strategy 

40% exploration, 60% exploitation     
Optimal Reward = -4 

Exploration vs Exploitation 
Simulations 



Conclusion 

• Human-Machine Interaction 

• Learning Systems based on  
– Human feedback  
– Uncertainty user/world state 
– Reward structure 
– Adaptive strategy computation 


