

Spoken Dialog Systems: from Rule-Based Systems to Markov Decision Processes

S. Varges G. Riccardi S. Quarteroni A. Ivanov P. Roberti

AMI² Lab, casa.disi.unitn.it

EECS Department, University of Trento, Italy

{varges,riccardi,silviaq,ivanov,roberti}@disi.unitn.it

Outline

- Motivation and Problem
- Spoken Dialog Systems
- · Learning Dialog Models
- · Markov Decision Processes
- · Adaptive SDS Demo

Spoken Dialog Systems

Applications

- · Call Center Automation
 - Customer Care
 - Business Information services (e.g. yellow pages)
- Spoken/Multimodal Access to web documents and services (e.g. voice portals)
 - Smart Phones
- · Interactive in-car navigational systems
- Personal Agents
 - Butler agents, Shopping assistants
 - Assistants for elderly people or people with disabilities
- · Consumer Robotics

Dialog Example

System: Hi, This is JD Travel Agent, How May I Help You?

Caller: Hi, I need a four stars hotel in Trento

ASR : I need a for stars hotel in SLU : INFO(0.8) HOTEL(0.7)

DM: Request.Date.CheckIn

Turn 1

System: When do you want to check in?

Caller: I plan to arrive on um May 30

ASR : I arrive on May 30

SLU : DATE(0.8)

DM : Request.DateCheckOut

Turn 2

System: When do you want to check out?

Caller: June 6
ASR: June

SLU : DATE(0.7)

DM: Request.DateCheckOut

Turn 3

System: Please repeate the checkout date?

Caller: June 6
ASR: June 6

SLU : DATE(0.9)

DM: Confirm.CheckIn,Checkout

Turn 4

time

Motivation

- · How to <u>automatically</u> train SDS such that:
 - Minimize the amount of time and resources (human and data)
 - Maximize the effectiveness of SDS (e.g. task completion rates)
 - wrt to system performance (e.g. ASR and Language Understanding errors)
 - wrt to user input and behavior variability
 (e.g. hang-ups, language etc.)

Rule-Based Systems

1) Domain Representation

2) Task Representation

3) Task Execution

are hand-coded

Markov Decision Processes

- MDP: dialog as sequential decision process with transitional uncertainty
 - Maintains one dialogue state s at each time t
 - action a_t chosen w.r.t state s
- POMDP: adds observational uncertainty (ASR, SLU, ...)
 - maintains large number of `parallel' dialogue states: the `belief'
 - action a_t chosen w.r.t the distribution of states
 - Training: by RL, with user simulations

State Representation an example from tourist domain

Concept	Value	Confide nce	Rank	Recency	Verification Status
Activity	(n tasks)	0.0 -1.0	1, 2	1, 0	-
Location	(m)				positive
StarRating	1-5				negative
Month_start	1-12				
Day_start	1-31				
Month_end	1-12				
Day_end	1-31				
Duration	1-90				
Quit-user	1, 0				
Operator-user	1, 0				

Legend

au user act at time t

as system action at time t

S_t system state space at time t

s_{r.t} system state of rank r at time t

U₁ user state at turn n

s_k,a_m (Policy): action m at state k

Q*_k (Policy): value of s_k,a_m:

Reward function

Reward R = $w_1 M - w_2 N - w_3 D - w_4 E$ where

M: #matches user goal concepts – system concepts

N: #mismatches incl. unknown

D: duration in turns

E: ending cost

Factors and Weights used in demo system:

 $w_{1:}$ 10, $w_{3:}$ 0.25, all other weights =1

Ending costs E: operator 10, hangup/quit 20, DB 5

Value update in policy

(Following Levin et al. 2000:)

n= number of sessions

C= cost

Q*= estimate of optimal state-action value

$$Q_{t}^{*}(s',a') = C(s',a') / n + Q_{t-1}^{*} x (n-1) / n$$

- Current dialog systems do not explore, rather exploit hardwired and expensive heuristic strategies.
- Conversational Agent needs to find trade-off between exploration and exploitation reward
- Most natural (wrt cognitive process) strategy

Adaptive Learning

- Action selection strategy
 - Softmax (T): actions selected according estimated probability distribution (e.g. Gibbs Distribution)
 - Greedy (ϵ): exploitation is selected with prob ϵ and exploration with prob (1- ϵ).

 $\sum e^{\overline{Q_t(b)/t}}$

- ·Example
 - -Adaptive Spoken Dialog System seeking to acquire two attribute slots (day and month)

Exploration vs Exploitation Simulations

40% exploration, 60% exploitation Optimal Reward = -4

0% exploration, 100% exploitation:

Does not find optimal dialogue strategy

Conclusion

· Human-Machine Interaction

- · Learning Systems based on
 - -Human feedback
 - -Uncertainty user/world state
 - -Reward structure
 - Adaptive strategy computation