Spoken Dialog Systems: from Rule-Based Systems to Markov Decision Processes
S. Varges
G. Riccardi
S. Quarteroni
A. Ivanov
P. Roberti

AMI² Lab, casa.disi.unitn.it

EECS Department, University of Trento, Italy

{varges,riccardi,silviaq,ivanov,roberti}@disi.unitn.it
Outline

• Motivation and Problem
• Spoken Dialog Systems
• Learning Dialog Models
• Markov Decision Processes
• Adaptive SDS Demo
Spoken Dialog Systems

Caller voice request

Automatic Speech Recognition

Words
"I would like a hotel in Trento"

Spoken Language Understanding

Meaning
"Info Hotel"

Dialogue Management

Action
"#ask @date"

Language Generation

Words
"When would you like to leave?"

Text-to-Speech Synthesis

TTS

ASR

DM

LG
Applications

• Call Center Automation
 - Customer Care
 - Business Information services (e.g. yellow pages)

• Spoken/Multimodal Access to web documents and services (e.g. voice portals)
 - Smart Phones

• Interactive in-car navigational systems

• Personal Agents
 - Butler agents, Shopping assistants
 - Assistants for elderly people or people with disabilities

• Consumer Robotics
System: Hi, This is JD Travel Agent, How May I Help You?
Caller: Hi, I need a four stars hotel in Trento
ASR: I need a four stars hotel in
SLU: INFO(0.8) HOTEL(0.7)
DM: Request.Date.CheckIn

System: When do you want to check in?
Caller: I plan to arrive on um May 30
ASR: I arrive on May 30
SLU: DATE(0.8)
DM: Request.Date.CheckOut

System: When do you want to check out?
Caller: June 6
ASR: June
SLU: DATE(0.7)
DM: Request.Date.CheckOut

System: Please repeat the checkout date?
Caller: June 6
ASR: June 6
SLU: DATE(0.9)
DM: Confirm.CheckIn,Checkout
Motivation

• How to automatically train SDS such that:
 - Minimize the amount of time and resources (human and data)
 - Maximize the effectiveness of SDS (e.g. task completion rates)
 • wrt to system performance (e.g. ASR and Language Understanding errors)
 • wrt to user input and behavior variability (e.g. hang-ups, language etc.)
Rule-Based Systems

1) Domain Representation
2) Task Representation
3) Task Execution

are hand-coded
Markov Decision Processes

- **MDP**: dialog as sequential decision process with *transitional uncertainty*
 - Maintains one dialogue state s at each time t
 - action a_t chosen w.r.t state s

- **POMDP**: adds *observational uncertainty* (ASR, SLU, ...)
 - maintains large number of `parallel' dialogue states: the `belief'
 - action a_t chosen w.r.t the distribution of states
 - Training: by RL, with user simulations
State Representation
an example from tourist domain

<table>
<thead>
<tr>
<th>Concept</th>
<th>Value</th>
<th>Confidence</th>
<th>Rank</th>
<th>Recency</th>
<th>Verification Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>(n tasks)</td>
<td>0.0 -1.0</td>
<td>1, 2</td>
<td>1, 0</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>(m)</td>
<td></td>
<td></td>
<td></td>
<td>positive</td>
</tr>
<tr>
<td>StarRating</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td>negative</td>
</tr>
<tr>
<td>Month_start</td>
<td>1-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day_start</td>
<td>1-31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month_end</td>
<td>1-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day_end</td>
<td>1-31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>1-90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quit-user</td>
<td>1, 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator-user</td>
<td>1, 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...............</td>
<td>...</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td></td>
</tr>
</tbody>
</table>
POLICY:

\[s_1, a_1 \rightarrow Q^*_1(s_1, a_1) \]
\[s_1, a_2 \rightarrow Q^*_2(s_1, a_2) \]
\[s_2, a_1 \rightarrow Q^*_3(s_2, a_1) \]
\[s_3, a_4 \rightarrow Q^*_4(s_3, a_4) \]
Legend

\(a_u \): user act at time \(t \)

\(a_s \): system action at time \(t \)

\(S_t \): system state space at time \(t \)

\(s_{r,t} \): system state of rank \(r \) at time \(t \)

\(U_{t1} \): user state at turn \(n \)

\(s_{k,a_m} \) (Policy): action \(m \) at state \(k \)

\(Q^*_k \) (Policy): value of \(s_{k,a_m} \):
Reward function

Reward $R = w_1 M - w_2 N - w_3 D - w_4 E$

where
- M: #matches user goal concepts – system concepts
- N: #mismatches incl. unknown
- D: duration in turns
- E: ending cost

Factors and Weights used in demo system:

w_1: 10, w_3: 0.25, all other weights = 1

Ending costs E: operator 10, hangup/quit 20, DB 5
Value update in policy

(Following Levin et al. 2000:)

\(n\) = number of sessions
\(C\) = cost
\(Q^*\) = estimate of optimal state-action value

\[Q_t^*(s',a') = \frac{C(s',a')}{n} + Q_{t-1}^* \times \frac{(n-1)}{n} \]
Exploration vs Exploitation

- Current dialog systems do not explore, rather exploit hardwired and expensive heuristic strategies.
- Conversational Agent needs to find trade-off between exploration and exploitation reward
- Most natural (wrt cognitive process) strategy
Adaptive Learning

• Action selection strategy
 - **Softmax** (τ): actions selected according estimated probability distribution (e.g. Gibbs Distribution)
 \[\frac{e^{Q_t(a)/t}}{\sum_{b} e^{Q_t(b)/t}} \]
 - **Greedy** (ε): exploitation is selected with prob ε and exploration with prob $(1-\varepsilon)$.

• Example
 - Adaptive Spoken Dialog System seeking to acquire two attribute slots (day and month)
Exploration vs Exploitation

Simulations

40% exploration, 60% exploitation
Optimal Reward = -4

0% exploration, 100% exploitation:
Does not find optimal dialogue strategy
Conclusion

• Human-Machine Interaction

• Learning Systems based on
 - Human feedback
 - Uncertainty user/world state
 - Reward structure
 - Adaptive strategy computation