
THE LUNA SPOKEN DIALOGUE SYSTEM: BEYOND UTTERANCE CLASSIFICATION

M. Dinarelli, E.A. Stepanov, S. Varges, G. Riccardi

Department of Information Engineering and Computer Science,
University of Trento, Italy

{dinarelli, stepanov, varges, riccardi}@disi.unitn.it

ABSTRACT

We present a call routing application for complex problem
solving tasks. Up to date work on call routing has been mainly
dealing with call-type classification. In this paper we take
call routing further: Initial call classification is done in paral-
lel with a robust statistical Spoken Language Understanding
module. This is followed by a dialogue to elicit further task-
relevant details from the user before passing on the call. The
dialogue capability also allows us to obtain clarifications of
the initial classifier guess. Based on an evaluation, we show
that conducting a dialogue significantly improves upon call
routing based on call classification alone. We present both
subjective and objective evaluation results of the system ac-
cording to standard metrics on real users.

Index Terms— Spoken Language Understanding, Spo-
ken Dialogue Systems

1. INTRODUCTION

The goal of a call routing application is to determine the type
of the call from the (usually first) user utterance and trans-
fer the call to an appropriate destination. Even though at first
glance it may seem that a dialogue is not really necessary to
accomplish this, it is an important part of such an application
since it might not be possible to correctly guess the type of the
call. This might happen due to ambiguity of input or failure of
the system to understand the user correctly [1]. Call routing
has been investigated by [1, 2, 3] among others. Most of the
work in call routing has focused on classifiers and their per-
formance. To our knowledge, none of the works in the field
report evaluation of the effect of the dialogue on this task.

A call routing application – a Help Desk for hardware
and software-related problems – was developed as the Italian
Spoken Dialogue System Prototype for the LUNA Project.
The goal of the system is to identify the nature of the callers’
problems as one belonging to one of the 10 possible scenar-
ios (problem classes). Upon completion of the dialogue, the
call is forwarded to the appropriate human operator able to
provide further assistance. The system also summarizes call-
type and relevant attributes such as brand of hardware. An
example dialogue can be seen on Figure 1.

SYSTEM: Welcome to LUNA. Good day, I am Paola. How may I help you?
USER: Eh, Sorry. I have a problem with the printer.

ASR And I am sorry a problem with the printer

SLU

Concept Value Conf
conjugation and 0.725
problem a problem 0.731
computer componentHardware with the printer 0.718

CTC Label: C1 Printer Problem; Confidence: 1

DM

1 Infer subclass C1 Printer Problem
2 Inferred Class == CTC Label
3 CLASS LABEL ONLY
4 VERIFY Problem Class

SYSTEM: You have a problem with your printer. Do you confirm?
... ...

SYSTEM: Thank you, wait in line.
An operator will assist you with your Lexmark printer problem!

Fig. 1. Example dialogue translated to English

In this paper, we first present the architecture of the Spo-
ken Dialogue System (SDS) in Section 2. Section 3 deals
with the Spoken Language Understanding (SLU) component.
Section 4 presents the Dialogue Manager (DM). In Section
5 we present both subjective and objective evaluation results.
Concluding remarks are presented in Section 6.

2. DIALOGUE SYSTEM ARCHITECTURE

A typical interaction is initiated by a phone call that arrives
at a telephony server which routes it to a VXML platform.
Since the VXML standard is based on the web infrastructure,
a VXML platform can issue HTTP requests that can be served
by a web server just like any HTML page. This allows us
to organize the processing modules of the dialogue system
(SLU, DM, VXML generator) as web services that are in-
voked by the HTTP request. As a consequence, each system
turn of a dialogue is a separate, stateless request. Since di-
alogue is obviously stateful (even more so than conventional
web sessions), the state of the conversation needs to be pre-
served from one turn request to the next. This is done by
storing the system state in the database.

The architecture implements a ‘fat pipeline’: each speech,
language and DM module has access to the database for
rescoring and modeling (e.g. time series intra and inter
dialogues). At the implementation level, this balances a
lightweight communication protocol downstream with data
flowing laterally towards the database. Further details are
described in [4].

5366978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010

3. SPOKEN LANGUAGE UNDERSTANDING

The SLU Module of the SDS consists of two components op-
erating in parallel. Concept tagging is complemented with
user call-type classification, and the results of both compo-
nents are passed to DM to decide the next move.

3.1. Automatic Concept Tagging

The automatic concept tagging module of the prototype is im-
plemented with the re-ranking framework described in [5].
This framework performs SLU in two steps using jointly Gen-
erative and Discriminative models.

The first step is to produce a list of SLU hypotheses using
a Stochastic Conceptual Language Model. This is the same as
in [6] with the difference that we train the language model us-
ing the SRILM Toolkit [7] and we then convert it into a SFST.
This method allows us to use a wide group of language mod-
els, backed-off or interpolated with many kinds of smoothing
techniques.

The second step is discriminative re-ranking of the list
of n-best SLU hypotheses generated by the Stochastic Finite
State Transducer (SFST) module described above. Our dis-
criminative re-ranking is essentially an SVM (i.e. a classifier)
trained with pairs of conceptually annotated sentences pro-
duced by the SFST. SVMs learn to select which annotation
has an error rate lower than the others so that the n-best an-
notations can be sorted based on their correctness. The kernel
used to measure similarity between SLU hypotheses is a Par-
tial Tree Kernel (PTK). This re-ranking kernel, based on the
combination of four PTK, has been used successfully in sev-
eral tasks (see [5] for details on the Partial Tree Kernel and
on discriminative re-ranking for SLU) of Natural Language
Processing.

Let us consider the following Italian sentence as input,
taken from the LUNA corpus along with its English transla-
tion: Ho un problema sulla stampante (I have a problem with
my printer). A possible semantic annotation for this sentence
is:

null{ho} PROBLEM-B{un} PROBLEM-I{problema}
HARDWARE-B{sulla} HARDWARE-I{stampante}

where PROBLEM and HARDWARE are two domain
concepts taken from a purpose-defined ontology. The on-
tology describes each concept as a class with one or more
attributes as well as relations holding between concepts [8].
null is the label used for words not meaningful for the task.
In order to have a one-to-one association between words and
concepts, we use begin (B) and inside (I) markers to segment
each concept.

This annotation is automatically performed by a model
combining the FST representation of the input sentence with
three transducers: (1) transducer mapping words to word
categories (POS Tags and morpho-syntactic categories), (2)

transducer mapping categories into concepts and (3) the SFST
representation of the SCLM mentioned above. The SCLM
represents joint probability of word and concept sequences.

The model has been tested on the Italian corpus ac-
quired within the LUNA Project. The corpus is made of
human-machine (HM) dialogues acquired with a Wizard-of-
Oz approach (WOZ). The results of the SLU model described
in this work are expressed in terms of Concept Error Rate
(CER). The baseline of the SFST model on the LUNA cor-
pus test set is 23.2% CER and 26.1% CER on attributes
and attribute-values extraction, respectively. Applying the
re-ranking framework described in this section, results are
18.4% CER and 21.3% CER on attributes and attribute-
values extraction. For further details on the LUNA corpus
and results of SLU using SFST and the re-ranking framework
see [5].

3.2. Call-Type Classification

Since the goal of the system is to classify the call as belong-
ing to one of the ten possible scenarios, SLU concept attribute
values and segmentation are also complemented with user
goal prediction. These user goals are extracted from the caller
responses to the open-ended opening prompt. A BoosTexter
[9] based utterance classifier is build to operate on ASR hy-
potheses in parallel to SLU concept segmentation. The class
label provided by the classifier and its confidence are used
further for the decision by the DM.

The call-type classifier was trained on first utterances of
the LUNA Wizard of Oz corpus. Due to the nature of the
task - the classification of documents in the same domain -
the most distinguishing features are hardware types such as
keyboard, mouse, etc.; thus, unigram model had comparable
performance to the bigram and trigram feature models. The
best performing unigram model, having 93.8% accuracy on
the test set, was chosen to be used for call-type classification
within the spoken dialogue system prototype. We attribute the
high performance on the test set to the nature of the WOZ data
collection and to it being trained and tested on transcriptions.
Thus, we expect the performance to be lower in real user in-
teractions involving classification of ASR output, which is
known to have lower accuracy than transcription. In fact, the
performance of the classifier on ASR outputs of the same test
set yields 90.8% accuracy.

4. DIALOGUE MANAGEMENT

Dialogue management follows an Information State Update
approach [10]. First, the following information is retrieved
from the database:

• ASR recognition results of last user turn;

• confidence and other thresholds;

• SLU concept attribute-value pairs;

5367

• classifier results for the problem class if available (first turn
only), which include problem class label and confidence of
this label, as mentioned in section 3.2;

• all open questions for the current dialogue from the database;

• application information already provided by the user, includ-
ing their grounding status (‘explicitly-verified’ by a clarifica-
tion question, ‘implicitly-accepted’ by virtue of being above
a heuristically set threshold, and ‘under-verification’ for on-
going clarification questions);

• user rejections in verification questions and ‘noinput’ / ‘no-
match’ events of the entire dialogue;

• ‘noinput’ and other events are summarized to produce counts
that can serve as ‘goodness metrics’ of the ongoing dialogue.

Given this information, the DM employs a ‘dialogue
move engine’ to determine the system action and response.
It is using several sets of forward chaining inference rules:
SLU rules match the user utterance to open questions. This
may result in the decision to verify the application parameter
in question, and the action is verbalized by language gen-
eration rules (which are part of the DM in this system). If
the parameter is accepted, application dependent task rules
determine the next parameter to be acquired, resulting in
the generation of an appropriate request. Typical dialogue
moves available to the system are those that are needed
for the application domain, for example forward looking
moves such as ‘question-parameter’, ‘confirm-parameter’,
and ‘request-repeat’, and backward looking moves such as
‘accept-parameter-implicitly’ (by the system) or ‘answer-
question-parameter’ (by the user). The dialogue is initially
open to a wide range of user utterances (in response to “How
may I help you?”), and becomes more constrained after that.

5. EXPERIMENTS AND RESULTS

The system was tested by 50 volunteer callers (3 calls each),
and the collected calls were transcribed and annotated. We
have selected a 100 dialogue subset (only dialogues contain-
ing all required metrics are included) that was used in assess-
ing the systems performance.

5.1. General Dialogue Statistics

The average duration of the 100 dialogues is 40.29 seconds,
with 5.10 turns per dialogue in average. In the scenarios cov-
ered by the prototype there is 1 task per dialogue by design
(excluding transfer to the operator request, which was never
encountered).

The dialogues were categorized with respect to the way
the dialogue was ended: T1 – the call was routed with cor-
rect attribute values, T2 – the call was routed with incorrect
attribute values, and T3 – the call was transferred to the op-
erator. As can be seen in Table 1, successful dialogues (T1)
have the least number of turns on average and the shortest di-
alogue duration. Dialogues in T3 category, on the other hand,

Metric All T1 T2 T3
Av. Dial. Dur. (sec) 40.29 36.54 42.93 45.90
Av. Turn. Dur. (sec) 7.90 8.08 7.87 7.40
Av. # of Turns 5.10 4.52 5.45 6.20
Av. # of Tasks 1 1 1 1

Table 1. General dialogue and utterance level metrics

P R F1 TSR
T 0.52 0.46 0.49 0.47
T* 0.57 0.56 0.56 0.57

Table 2. Task Success as Precision (P), Recall (R) and F-
Measure (F1); and Task Success Rate (TSR)

have the longest average duration and contain the highest av-
erage number of turns. The average turn duration exhibits
the reverse tendency compared to average dialogue duration
and number of turns. This observation is to be expected since
successful dialogues contain fewer turns with more interac-
tion. The general dialogue statistics once again confirm that
the length of the dialogue is indicative of its success.

5.2. Task Success

The task is considered completed successfully in case it was
routed to the appropriate destination, i.e. both problem class
and the hardware brand attribute should be correct. However,
from the point of view of the user, on a longer term, the task
can be considered successful also in case of transfer to the op-
erator. The task success values presented are given for both
cases: T – success only refers to call routing with correct at-
tributes; T* – success also includes transfer to the operator.

[4] measure task success as the ratio of completed tasks to
tasks requested, such that the completed task is the requested
task. Precision (P), Recall (R), F-Measure (F1), on the other
hand, allows one to measure task success in a way that also
takes into account mismatches between requested and com-
pleted task types. The resulting overall task success in terms
of P , R, & F1 and Task Success Rate is presented in Table 2.

Regarding task failure, in the majority of cases (28 out
of 43, i.e. 65.12%; not shown in Table 2), a task was not
completed successfully (call routings with wrong hardware
brand attribute) because the system received a brand name
that was not covered by the grammar. Misrecognition was
not among the main reasons contributing to the ‘failed’ task
category in case of routing with incorrect attributes or in case
of transfer to the operator.

Overall, the task success could be greatly improved by in-
creasing the coverage of the grammars used in the system.
However, better ASR is not the only factor affecting success-
ful call routing; classifier performance and dialogue also play
an important role. In Section 5.4 we present an evaluation of
the classifier in detecting call type as well as the performance
increase we gain from dialogue.

5368

Score T3 T2 T1 Total
5 0.10 (1) 0.27 (12) 0.63 (29) 0.42 (42)
4 0.00 (0) 0.11 (5) 0.22 (10) 0.15 (15)
3 0.10 (1) 0.30 (13) 0.11 (5) 0.19 (19)
2 0.10 (1) 0.18 (8) 0.04 (2) 0.11 (11)
1 0.70 (7) 0.14 (6) 0.00 (0) 0.13 (13)

of Scores 0.10 (10) 0.44 (44) 0.46 (46) 1.00 (100)
Av. Score 1.70 3.20 4.44 3.62

Table 3. Subjective task success assessment normalized by
task completion type (counts given in parentheses)

Problem Class Classifier Dialogue
C1 Printer 0.89 0.94
C5 Keyboard 0.67 1.00
C9 CD-ROM 0.94 1.00
...
Accuracy (all classes) 0.79 0.94
Weighted Av. Acc. 0.79 0.94

Table 4. Classifier vs. Dialogue performance (accuracy) on
determining the problem class

5.3. Task Success as Perceived by Caller

The callers also responded to a questionnaire following the
dialogue. One of the questions of this questionnaire, “How
well do you think the system understood your problem”, was
intended to measure the callers subjective perception of the
task success. The callers scored the system on a 1-5 Likert
scale. The results of the mapping of these subjective evalu-
ation scores to the three task completion types described in
Section 5.1 are presented in Table 3. As can be seen, call
routing with the correct attribute value was judged as better
understanding (average score 4.44) compared to the other two
task completion types (T2 – 3.20 and T3 – 1.70). Moreover,
there is a significant correlation between user judgements and
task completion types: Spearman r(98) = 0.56, p < 0.05.

5.4. Call-type Classification vs. Dialogue

Since our system performs call-type classification on ASR in-
terpretations of caller utterances, we can assess the perfor-
mance gained by implementing the whole dialogue system
pipeline versus just the call-type classifier. Table 4 provides
the call-type classification accuracy for classifier and the di-
alogue system as a whole. The values for dialogue contain
cases for all dialogue completion types in which the system
was able to determine the problem class correctly. As can be
seen from the table, there is an important improvement in per-
formance on call-type classification when dialogue is used.
Even though only 100 dialogues were used, the results are
statistically significant: χ2(1, N = 200) = 9.63, p < 0.05.

To assess the performance we gain by using dialogue even
further, we measured the oracle accuracy of the classifier. Di-
alogue performance on detecting call category (0.94) turned
out to be higher than 6-best oracle accuracy of the classifier
(0.93). This means that even an oracle that always chooses

correctly from the 6 best hypotheses would not be better than
our dialogue system.

6. CONCLUSION

In this paper we have presented a call routing application
developed as a spoken dialogue system prototype for the
LUNA Project. We described a SLU component based on
joint generative and discriminative models, complemented
with user-goal classification, the results of which are used by
rule-based Dialogue Manager for inferences and the decision
process. We also presented evaluation results of the system on
task success, comparing objective and subjective assessments
of the dialogues. We quantified the effect of dialogue on call
routing and found a significant improvement compared to
routing based on call classification alone.

7. REFERENCES

[1] A. L. Gorin, G. Riccardi, and J. H. Wright, “How may
i help you?,” Speech Communication, vol. 23, pp. 113–
127, 1997.

[2] J. Chu-Carroll and B. Carpenter, “Dialogue manage-
ment in vector-based call routing,” in Proc. of the An-
nual Meeting of the ACL, Montreal, 1998.

[3] K. Evanini, D. Suenderman, and R. Pieraccini, “Call
classification for automated troubleshooting on large
corpora,” in Proc. of ASRU 2007, Kyoto, Japan, 2007.

[4] S. Varges, G. Riccardi, and S. Quarteroni, “Persistent
information state in a data-centric architecture,” in Proc.
of SIGDial 2008, Columbus, USA, 2008.

[5] M. Dinarelli, A. Moschitti, and G. Riccardi, “Re-
ranking models for spoken language understanding,” in
Proc. of EACL2009, Athens, Greece, 2009.

[6] C. Raymond and G. Riccardi, “Generative and discrim-
inative algorithms for spoken language understanding,”
in Proc. of Interspeech 2007, Antwerp, Belgium, 2007.

[7] A. Stolke, “Srilm: an extensible language modeling
toolkit,” in Proc. of SLP2002, Denver, USA, 2002.

[8] S. Quarteroni, G. Riccardi, and M. Dinarelli, “What’s
in an ontology for spoken language understanding,” in
Proc. of Interspeech 2009, Brighton, U.K., 2009.

[9] R.E. Schapire and Y. Singer, “Boostexter: A boosting-
based system for text categorization,” Machine Learn-
ing, vol. 39, no. 2/3, pp. 135–168, 2000.

[10] S. Larsson and D. Traum, “Information state and dia-
logue management in the trindi dialogue move engine
toolkit,” Natural Language Engineering, vol. 6, no. 3-4,
pp. 323–340, 2000.

5369

