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Abstract—\We are interested in adaptive spoken dialog systems to what a system designer hoped they would say. We enable
for automated services. Peoples’ spoken language usage varieshe machine to do this by relaxing the constraints on language
over time for a given task, and furthermore varies depending on coverage at each dialog instant, by estimating time and context

the state of the dialog. Thus, itis crucial to adapt automatic speech - - L
recognition (ASR) language models to these varying conditions. V&rYing features for the probability distribution of a large vo-

We characterize and quantify these variations based on a database Cabulary speech recognizer (LVSR).
of 30K user-transactions with AT&T’s experimental How May | The naturalnessof our spoken dialog system is quantified
Help You?spoken dialog system. We describe a novel adaptation by analyzing the language characteristics of human-human and
algorithm for language models with time and dialog-state varying - ;man-machine interactions as a function of time. One direct
parameters. Our language adaptation framework allows for rec- . L
ognizing and understanding unconstrained speech at each stage ofr_r'ea.sure oflanguage CompI¢XIty is the uttgrance length d'_smbu'
the dialog, enabling context-switching and error recovery. These tion in terms of words. We will show that this figure of merit al-
models have been used to train state-dependent ASR languagelows for a partial separation between human-human and human-
mOC:je|S- We havedevaluelltei their pt_erformagcde_ \lNith ;e:‘»peC{Nto machine distributions. Furthermore, language variations in time
word accuracy an erplexity over time an lalog states. e P HH H
have achievec)i/ a redﬂcti%n ofy40% in perplexity ang of 8.4% in af‘d d_lalog qontexts showla_need to adapt word probablllty dis-
word error rate over the baseline system, averaged across all tr'bu“ons without constraining th,e V,Ocabt_"ary Size. T_he .algo-
dialog states. rithm for language model adaptation is defined as log-likelihood
maximization in the context of the cross-validation technique.
. !ndex Terms—lLanguage model, Iarge quabulary speeqh recog- | ticul h lqorith toerf th -
nition, spoken dialog system, stochastic finite state machines, sto-'1! Particuiar, we show our aigorithm outpertorms th€ maximum
chastic model adaptation. likelihood estimates in tracking the time variation of the empir-
ical distribution. The underlying framework for the model esti-
mation and adaptation is the stochastic finite state machine rep-
resentation given by the variable N-gram stochastic automaton
(VNSA) [16], [17]. In these cases, given one or more input
. INTRODUCTION strings as input, the goal is to reestimate state transition proba-

HERE exist a variety of interactive speech systems in labBlities pertaining only to the input set. Input string matching on
ratories around the world, some even in actual service [q,finite automaton is a convenient solution to this problem.
[6], [8], [11], [12]. There are, however, many open issues con- The evaluation of our algorithms has been carried out within
cerning how to provide robustness for large populations of notfte How May | Help You?Zspoken dialog system for a call-
expert users. Peoples’ spoken natural language is highly vaRuting task [8]. Over three years, we have collected a total of
able. A first and well-studied dimension of variation is differ30K user-transactions at three distinct points in time and for dif-
ence in language usage among individuals [7]. Different peoﬁﬁrent experimental setups. The Iangque probability distribu-
use different words and sentence structure to convey the sdtBS have been shown to change over time and context and the
meaning [8]. The second variation is over time. The ensemifeedictions of the adaptation algorithm have been tested accord-
user-behavior changes as does the world (e.g., ten years agd Mely: _ o .
body asked fotinternet access” ). Plus, there are shifts In Section I, we outline the motivations for building adap-
in language usage as people adapt to speaking with machidi¥§, Spoken language systems. In Section IIl, we describe the
The third variation is over dialog state. Depending on the dialdgnguage variability over these three databases. The language
history, in particular the latest prompt, people will of course rénodel adaptation algorithm is described in Sections IV and V.
spond differently. The algorithm is experimentally evaluated in Section VI, which
In this work, we propose a novel algorithm for stochastic largives the improvements in perplexity and word accuracy re-
guage model adaptation that allows fonatural human-ma- Sulting from the adapted automatic speech recognition (ASR)
chine interaction. Bynatural, we mean that the machine rec/anguage models.
ognizes and understands what people actually say, in contrast
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grammars are hand-crafted to guess the user’s response. Ev- TABLE |
erything that is not recognized with high acoustic confidence DiALoG STATE ASL/E’:;’E“’;PT'EQU'VALENCE
(within or out of the grammar) is rejected and the user is
reprompted [10], [15]. For example, an automated call routir prompt Class Example
system using word-spotting technology and close-end GREETING AT&T, How May I Help You ?
prompt would behave as follows (whefd denotes machine "BILLING METHOD | How would you like to bill this call?
andU denotes a human user). CARD NUMBER May I have your card number, please?
. CONFIRMATION Do you need me to give you credit?
M)  Please say collect, calling card or operator. PHONE NUMBER | What number would you like to call?
U) | would like to reverse the charges to Nancy REPROMPT Sorry. Please briefly tell me
M) Please say collect, calling card or operator. how may I help you?
U) collect, please
M) Please speak the telephone number now.
U) Thenumberis1l234567890are@ode123
M) Invalid telephone number. Please speak the telephone I1l. M EASURING LANGUAGE VARIABILITY
number now. A. Databases
U 1231234567890
M)  Thank you for calling. In spoken dialog systems, users’ utterances depend on the

dialog history and should be clustered accordingly. Hence, we

In this example, the system is not able to recognize the usehgrtitioned the data based on the notion of dialog state. Each
initial request from unconstrained speech. Upon repromptingg|og state is associated with a set of users’ responses. There
the user uses the menu-speak style and the keyword “collectaig many notions of dialog state in the literature. In fact, the di-
spotted correctly. Subsequently, the system is not able to rec@fiyg manager in our system [1] hasexplicit representation of
nize the spontaneousimericlanguage and simply rejects thesgate. But, in these experiments we mapped users’ responses into
second utterance. In order to successfully complete the transs&aivalence classes of prompts, which is a first-order approxi-
tion, the user is required to speak the digit sequence in a higihation to dialog history. Examples from these various classes
constrained manner. are shown in Table 1.

In contrast to this approach, this paper addresses the problemyyer three years, there have been three data collections in
of creating natural spoken dialog systems for automateghe process of training and adapting language models for the
services. For a human-machine interaction to be natural, it{g, May | Help Yo@ spoken dialog system. The users have
crucial to have time and dialog-state varying language mOdéN/vays been sampled at random and generally used only once

parameters. Within a human-machine dialog a word sequengf automated system. The three databases will be referred to
should be predicted based on the whole dialog history. F& HH HM1, and HM2 sets.

example the worgtes is a reinforcement feedback signal in the HH)
case of confirmation questions. However, the word “yes” (or
its equivalent) is also used colloquially to mark the beginning
of a sentence without any further semantic connotation. As a
consequence, the probability distribution of “yes” should be
dependent on the dialog context.

A natural spoken dialog system should allow for recovering HM1

. . . )

the specific goal of the user by having large language lexical
coverage at each stage of the dialog. In our system the available
lexicon is uniform throughout the dialog session so that the un-
derstanding module is reactive to either user’s or system’s initi-
ated topic switch [24]. The following is an illustrative example.

This first collection served as bootstrap for our lan-
guage models. We transcribed only the user’s re-
sponse tchumanagents’ greeting oHow May |
Help Yo The training and test set is composed
of 7844 and 1000 utterance transcriptions, respec-
tively [8].

The HH training set was used to train language
models for speech recognition and understanding
for the first dialog system foHow May | Help
You? For later stages of the dialog where we had no
training data, we designed place-holder grammars.
We then had the spoken dialog system interact with

M)  How May | Help You? live customer traffic and collected the HM1 data-

U) | want to put this on my VISA card. base. The size of the training and test sets in HM1
M)  What is your card number? are, respectively, 8K and 1K.

U) Uh, Ican'tfind it. Can | make this a collect call? HM2) The HH and HM1 data sets were used to train and
M)  What number would you like to call? adapt the speech recognizer to the different dialog
U) Good question. | need John Smith’s number in Newark. contexts. We then exposed this new incarnation to
M) Please hold on for directory assistance. live traffic and gathered the third set, namely the

HM2 database (12K). This dataset has been used

Thus, our goal is to shift the burden from human to machine, for the system evaluation only

so that the system adapts to people’s language, in contrast to
forcing users to learn the machine’s jargon. In the next sections
we will examine how peoples’ language actually varies in time’
and dialog context and how language models can be adapted sAs was observed in[8], the number of words per utterance in
that anatural interaction with the system is possible. HH is unimodal and highly skewed with a long tail. In Fig. 1,

Empirical Word Sequence Distributions
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Fig. 1. Utterance length distribution for responses to REPROMPT ardg. 2. Utterance length distribution for responses to CONFIRMATION
GREETING prompt-equivalence class in HH and HM1 databases. prompt-equivalence class in HM1 database.

N 10*
we compare that to the length distribution for responses to t

GREETING prompt in HM1. First, observe that the HM1 his 10° 10° 10°
togram is bimodal. One mode corresponds to menu-speak: wl | . ,
people are aware that they are talking with a machine, th 10 10 10
they sometimes speak in short fragments. Interestingly, wh 4o’ 10" 10"
some of the menu-speak corresponds to keywords on deplo

4] 0

menus, many do not. Instead, these short phrases often cog“’mo 10

spond to the salient fragments which were derived from the FE

natural language database. Observe also that the second n ot

of HM1 is almost identical to the single mode of the HH re

sponses. Thus, we can view the HM1 GREETING-respons

as a mixture of menu-speak and natural spoken language, v ¢

the second component similar to the natural language in H

Also in Fig. 1, we observe that the HM1 distribution tail falls ° e :

off much faster than for HH. Upon inspection, we observe th . , o|[[Fepromt

the very long utterances in HH are accompanied by the ager  10° 10’ 10° 10° 10' 10° 10 10

. Rank

back-channel utterances suchuaishuh , encouraging the cus-

tomer to continue talking. In the case of HM1, there is no sucly. 3. Word frequency versus rank order plots for the six dialog contexts

back-channel encouragement from the machine, so people d§fg'0g scale) in HM1 database.

tell long stories as often. Finally, also in Fig. 1, we plot the length

distribution for responses to a reprompt in HM1, observing th&8ection 11). Observe that thaffirmationtlength distribution

it is also unimodal and similar to the HH distribution of naturals unimodal and tends to comprise shorter utterances than

language responses to a human agent. So, it appears that tiesedenials. The explicit denials are a bimodal mixture of

people who need reprompting respond in natural language, sbbrt responses plus a second mode at the same position as

menu-speak. This fact reinforces the need for training languaige the GREETING prompts. These modes correspond to

models based on dialog history. people answeringo or some variant (short utterances) or to
We then measure the length distribution for responses fgeople using natural language, with “no” prepended. Thus,

CONFIRMATION prompts, as shown in Fig. 2. The responsase observe that it is more likely for “no” to be followed by

are divided into three categoriesxplicit affirmations, explicit additional spoken information than it is for “yes.”. Finally, the

denials,and other. Explicit affirmation/denials are sentence®ther responses also have their mode at that same position,

which contain the words “yes” or “no” or some variant thereoforresponding to the natural language distribution.

(i.e., the YES-NO equivalence classes). These are sometime§he utterance length distributions over different contexts

spoken in isolation, or as a prepend to a natural languagige us a statistical description of the language complexity

utterance to provide further task information. For examplas measured by the sentence length. Another measure of the

responding to the prompDo you want to make a creditlanguage complexity are the Zipf plots [25] of word relative

card call? as a user might respond “Yes, the card number fiequency versus their rank orders. For natural language,

xxXxxxxX.” The othercategory occurs during context-switchingZipf’s relation is of the formfr = K, wheref is the relative

error recovery or user-confusion (see the second examplefriequency,r is the rank order and( is a constant. In Fig. 3

' 10°  10° 10' 10° 10

10°

(N
o
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we show the log-log Zipf plots of six different dialog contexts,
for the HM1 data. The log-linear dependency fits not only th, ~ cal1ing/0s
open-ended prompts (GREETING and REPROMPT) but als
the CONFIRMATION and BILLING queries. In the case of °
CARD and PHONE NUMBER, the curve fitting is composed
of a constant piece (all digits are approximatively equall
likely) and a log-linear piece which accounts for the carrie
phrases within spoken digits and user or system error recovery.
All the empirical utterance length and word distributions
support the argument for language models with large lexicon
coverage at any instant in the dialog. In the next section u@guage model design does not allow for topic switching,
describe how language models are trained for large lexicBh on-line error recovery from speech understanding errors.
coverage and specific to each dialog context. Thus, the main disadvantages of all previous approaches are
the poor language coverage at each state of the dialog and data
fragmentation. In other related work, the estimation problem
is solved by linear interpolation [21] or maximum entropy

In the standard speech recognition paradigm, languag@dels [14], speaker backoff models [2], or MAP training [5].
models exploit the lexical context statistics (word tupledh this work we take the approach of training language models
observed in a training set to predict word sequence probabilities each state;, in such a way that the user can interact in an
on a test set. In that traditional approach, the underlying apen-ended way without any constraint on the expected action
sumption is that the information source (thatural language) at any point of the negotiation.
is stationary. As a consequence, this evaluation paradigm doek order to condition the expected probability of any event at
not account for the temporal and contextual language variatigi@tes; we propose a novel adaptation algorithm for self-orga-
in a human-machine interaction. In contrast with this scenari@izing stochastic finite state machines. At the same time, the
spoken dialog systems pose a challenge to the traditional vieird probability distribution is estimated to account for any
of language model training. In general the word sequenpessible event at any instant of the dialog. In the following sec-
distribution at stage; of the dialog is dependent on the entirdion, we outline the stochastic finite state machine representa-
interaction history. Hence, it is more appropriate to concei¥®n of the language model and the novel adaptation algorithm.
the LVSR as a statistical model that dynamically adapts to
the different stages of the human-machine negotiations #r Stochastic Finite State Machines

successfully completing the task. Our approach to language modeling is based on the VNSA
Learning language models that adapt to different events dgpresentation and learning algorithms first introduced in [16]
the course of a spoken dialog session is tightly coupled witlhd [17]. The VNSA is a nondeterministic stochastic finite state
the state sequence associated with the human-machine intemhine (SFSM) that allows for parsing any possib|e sequence
tion. In general, a dlalog state should keep track of the entireof words drawn from a given Vocabu|aw_ In its Simp|est im-
history. However, we will make a first-order approximation anglementation the statgin the VNSA encapsulates the lexical
associate a statg to each prompt equivalence class. The wor@yord sequence) history of a word sequence. Each state recog-
probability computation will apply to any definition of dialognjzes a symboky; € V U {e}, wheree is the empty string.
state. The probability of going from state; to ¢; (and recognizing
The entire transaction is associated with a state sequence @dsymbol associated wiy) is given by the state transition
the model is defined in terms of the states and state transitioggsbability, P(g;]q:). Stochastic finite state machines represent
The states,, is then used as a predictor to compute the wolile probability distribution over all possible word sequences in a

° please/l.o

collect/o. call/io

ves/os

Fig. 4. Example of a variable Ngram stochastic automaton (VNSA).

IV. LANGUAGE MODELING

sequence probability(wy, w2, - -+, wx|sx), as follows: compact way. The probability of a word sequefiecan be as-
sociated with state sequendés= ¢, - - -, @, and to the prob-
P(wy, wa, -, wy|sp) = H P(w;lwy, wa, -+, wj_1; s). ability P(£7). For a nondeterministic finite state machinex

; 1) the probability of ¥ is then given byP(W) = 37, P(¢&).

(1) Moreover, by appropriately defining the state space to incorpo-
The computation of the probabilityP(w;|wi, ws, ---, rate lexical and extra lexical information, the VNSA formalism
w;_1; Sx) can be decomposed into two subproblems. The firsan generate a wide class of probability distribution (i.e., stan-
addresses the problem of computing the word sequence prothard wordn-gram, class-based, phrase-based, etc.) [17]-[19]. In
bility given the states;.. The second involves the estimation ofig. 4, we plot a fragment of a VNSA trained with word classes
P(wjlwy, wa, - -+, wj_1; sx). In previous reported researchand phrases. State zero is the initial state and final states are
such dialog models have been used to partition the whaleuble circled. The transition from state zero to state one car-
set of utterances spoken in the dialog sessions into subséts the membership probabilify(C), where the clas§’ con-
(first subproblem) and then train standasegram language tains the two elementscollect, credit card. Then, the prob-
models (second subproblem) [11], [21]. A deficiency in thability of going from state zero to three is the class-based es-
approach is that the user can only utter words that he hamate Pop(* collect”) = P(C)P(  collect”"|C). The e tran-
previously (training set) spoken in a specific dialog state. Susftion from state four to state five is laackofftransition to a
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Fig. 5. Probability of the word classes YES, NO, and OTHER for three points in time (HH, HM1, and HM2 databases) and for two dialog states.

lower ordern-gram probability. The state two carries the inforA. Adaptation Algorithm

mation about the phrasrlling card The state transition func- e first step of the adaptation algorithm consists of parti-
tion, the transition probabilities and state space are leamed yi,ing the empirical data into all the available dialog contexts.

the self-organizing algorithms presented in [17]. The set of all user's observed responses at a specific gtage
of the dialog is split into training/y, development;), and
V. LANGUAGE MODEL ADAPTATION test €x) sets. We assume that there is an initial maokfélto

In spoken language system design, the state of the dialisg bpotstrap the adaptation algorithm and provide a probability es-
used as predictor of the user response. For example, if the cdifpate for all words
puter asks a CONFIRMATION question, then the most likely re- . A
sponse will contain language in the YES-NO equivalence class. Ay, = arg max log P(Bi|y) 2)
However, in order to provide robustness to user-initiated context *
switch, or system errors, we want to enab_le the s_ystem_ to_ MQVFere the modeh:* is the generic adapted language model.
from one state t.o any other ;tate of the dialog W'tmm'or' The maximum likelihood (ML) solution to the problem in (2) is
defined constramts..We achieve th|s goal by training langua Ren by a model exclusively trained &f. However, the size
models that recognize unconstrained utterances for each s{gig\q raining sef;, has generally insufficient statistics for reli-
st At the same time we adapt language models for each stagg ostimates of the model probabilities. Thus, the formulation
based on the expected users’ responses to open-ended profgpige agapted language model is given in terms of a convex
In Fig. 5, we pI.ot the wo_rd distribution for the_flrs.t token Ofinterpolation of the language mods? and a state dependent
a sentence for different dialog contexts. The distributions agg, je| \, This formulation is consistent with the Bayesian or
computed along two dimensions, time (HH, HM1, and HMg,inma posteriori(MAP) training proposed in the literature
data sets) and dialog contexts (GREETING and CONFIRMA yhe case of adaptation from small data sets [5], [21]. Recall

TION).* In particular, we define three word classes: YES angl, the janguage modaF is composed of the state transition
NO containing all the equivalent words for “yes” and “no,” '®tunction

spectively, and the OTHER (OTH) word class subsuming the re-

maining words in the dictionary. Note that in the HH database,  f. (,w)=p, pgeQ and weVuled (@3)

the word class YES occurs 50% of the times for the GREETING ’ T

stage, while its occurrence on the HM1 and HM2 GREETINGhere() is the set of all the SFSM states, and the state transi-

sets is negligible. This is an interesting characterization of lafion probabilities of the kindP(g;|g;), where F(g;, w) = q;

guage usage in human-human and human-machine interactigs,, ¢ v u {c}. In general, the language mod€l has larger

(see also menu-speak effect in Fig. 1). coverage than the data representejinMoreover, the model
IRecall from Section Ill that for the HH set we transcribed only the responsg‘sfé1 should be eSt'mated from the statistics drawn f'@mThen )

to the GREETING prompt. for A;! to have a high coverage language model while modeling
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the data sourced), the solution is to bootstrap the state tran-
sition functionF from A7 and compute the ML estimates, over

i

Bs.. In practice, we replace the ML estimate with the Viterbi ap-

proximation in order to prune the low probability state sequence W:LW]
paths. As for the estimation of the modg|, we run Viterbi Learning
training over each sef;, starting from the generic model” AT

Y
and estimate the transition probabilities. In order to account for V“‘.’r]@
unseen transitions, we smooth the transition probabilities with Traloin
the standard discount techniques discussed in [17]: ] A

argmaxlog P(8, 1.4)) ﬁ
N5 + 1 [ # ' ]‘_-

Pk(Qj|Qi) = m (4) ,11“;

wheren; (n; ;) is the number of times the staje(state transi-

tion ¢; — ¢;) is selected by the Viterbi decoding and is the

number of transitions leaving. The transition probabilities for Fig. 6. Block diagram for the language model adaptation.
the model\;* are then computed as follows:

TABLE I
Pf(qﬂqi) = akPT(qj|qi) + (1 — o) Pi(gjla:) TEST SET PERPLEXITY FOR STATIONARY AND TIME-VARYING MODEL
A
Z Pigila) =1 Dialog State Stationary Time-Varying

J (ML model) | (Adapted Model)
A GREETING 13.7 12.8
Fid(gile) 20 ) BILLING METHOD 104 6.4
Recall that in a nondeterministic stochastic automaton there CARD NUMBER 18.2 15.0
are transitions where either; € V' is recognized or the epsilon ggg;?;‘@ﬁg‘; 19603 172~18
symbol gets processed (also knownepsilon move The ep- REPEOMPT 140 53

silon movas encountered typically for backoff purposes or non-
terminal symbol resolution (e.g., class-based language models).
Thus, (5) applies to both cases in a unified manner, in contrastman)\f. It is interesting to note that LL:, j) corresponds to
the traditional linear interpolation ef-gram probabilities [9].  the entropy gain of the modek! with respect tox;.*:

The solution to (2) with respect to the parameterscannot
be given in an explicit form. However, for the adaptation formin LLR(k, 5) = H(Bk|)\f) — H(Bi |\ @)
(5), we use the cross-validation paradigm over the development
setsB;, to find the local optimum over a finite number of, whgre, for the entropy, we haye used the ergodic ass.umption of
values. (i = 0.8). Whereas the data is insufficient for CARDtN€ information source instantiatedp, 5y, and&y. We will use
and PHONE NUMBER casesy; is given a fixed value of 0.5. the LLR(%, j) figure of meritto validate the estimates computed
When a modeA? is not available for bootstrap, a context indethrough (2) in the next section.
pendent variable N-gram stochastic Aautomaton can be trained . ) . .
by pooling together the training sef [20] and still achieving B. Stationary versus Time and State Varying Stochastic Models
accurate state-dependent language models. The complete blodkn important characterization of an information source is its
diagram, describing the adaptation scenario and adaptationsa#itionarity with respect to the parameters of its probability dis-
gorithm steps is shown in Fig. 6. tribution2 If we consider the sample data at each instant an in-

An important issue in tracking the variability of a probabilitystantiation of a stationary process, then the ML estimates can be
distribution is the stochastic separation from a prior or alternatemputed by pooling together the data sampled at that instant.
distribution. The problem is to measure the similarity betweedn the other hand, if we wish to model a time-varying source,
the model\; and A} or A7 . If the two distributions are sim- we need to stochastically update the parameters of the proba-
ilar the sample data they have been estimated is most likéijity distribution. In the case apontaneouspoken language,
drawn from the same random source. A classical measuretlod most appropriate working hypothesis is to assume the non-
stochastic separation used in the decision theory for hypothesttionarity hypothesis for two reasons: not only do the statistics
testing is the log likelihood ratio (LLR). We extend this notiorof natural language vary over time and from one dialog state to
to the token-level log likelihood ratio computed over the deve&nother, but the interface of the dialog system may be improved
opment sef3y: from time to time, eliciting different kinds of spoken responses.

) B A Moreover, from a practical point view it is not always the case
LLR(k, j) = — log w (6) thatthe databases are available for on-line adaptation.

N 7 P(BA In Table Il, we compare the test set perplexity of the stationary
and stochastically adapted models. For the stationary model, we
train ML language models by pooling together the HH data and
the HML1 training sets.

whereN is the number of tokens if;,. The LLR(k, j) measure
over all possible modelg # &k can be positive or negative. If
it is a large positive (negative) number, that means #ais
modeling the dat#;, better (worse), in the log likelihood sense, 2Here we consider stationarity with respect to the mean.
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TABLE I TABLE IV
AVERAGE STOCHASTIC SEPARATION FOR CONTEXT-DEPENDENT PERPLEXITY REDUCTION VIA ADAPTATION TO DIALOG STATE
LANGUAGE MODELS
Dialog State Baseline Adapted Adapted
Prompt Class LLR(k) AT on HM1 | A} on HM1 | A7 on HM2
GREETING 0.75 GREETING 17.3 12.8 13.8
BILLING METHOD 1.25 BILLING METHOD 17.0 6.4 8.4
CARD NUMBER 0.50 CARD NUMBER 21.2 15.0 16.1
CONFIRMATION 1.88 CONFIRMATION 27.8 7.14 26.8
PHONE NUMBER 0.49 PHONE NUMBER 19.8 12.8 15.7
REPROMPT 0.53 REPROMPT 15.1 13.2 13.8
TABLE V
For each dialog stats,, the stochastic mappiny’ — A% PERCENT WORD ERROR RATE (WER) FOR STATE-ADAPTED LANGUAGE

(Sk — GREET|NG, B||_|_|NG' .. ) has been estimated with the MODELS. A(WER) IS THE WER RELATIVE IMPROVEMENT BETWEEN THE
. . . . . BASELINE (SECOND COLUMN) AND ADAPTED MODELS (THIRD COLUMN)
algorithm described in the previous section. In Table II, we show

the test perplexity measured on the HM1 test ggis In the State TTwial | 07) | (07) | (WER)
case of GREETING and REPROMPT stages, the adapted model  GREETING 76 1476 14331 70
slightly outperforms the ML estimates in tracking language vari- BILLING METHOD | 40.0 | 40.0 | 36.0 | 10.0
ation over time and nature of interaction (human-huwensus CARD NUMBER 275 | 1565 | 13.0 | 16.1

human-machine). In the other cases, the performance of the =~ CONFIRMATION | 604 | 45.6 | 41.7 )} 8.5
adapted models show that they are very effective in making the gggggﬁgywﬁ ig‘g ig'g g‘g 113 '69
backgroundmodel A7 tailored to the statistics of dialog con- Average 335 | 355 | 395 84
texts with relatively little amount of data.

While test set perplexity is a measure of a stochastic model’s
prediction power, it also useful to quantify the distance betwe&alking with a machine [3]. The language variation in both time
language models with the LLR figure of merit. In fact, usersand state is illustrated by each row of Table IV. The adapted
responses might overlap more in some stages of the dialog thfguage model provides a significantly lower perplexity for
in others. For example, the responses to PHONE and CARM® human/machine data than the human/human data. Observe
NUMBER requests have similar word distributions (see Sealso that the adapted model does a better job of modeling the
tion 11-B) and in fact their LLR %, ) is small. In Table Ill, we GREETING-responses in HM1 and HM2, as compared to HH.
report the average LLR, ) for a specific dialog state,. The This confirms our intuition that people’s responses are “sim-
average LLR is given bR (k) = 1/5 >_, LLR(k, i), where pler”in HM1 (or HM2) than HH, as discussed also in our earlier
there are five language model$ competing with); on the analysis of utterance-length.
same development sBj.. As pointed out in (7), the LLR, 4) In Table V, we provide corresponding measurements of word
figure of merit can interpreted as entropy gain (in bits), so thagcuracy at each dialog state for these adapted models.

a one bit entropy gain corresponds to halving the perplexity The first column gives the speech recognition results of
(equivalent models have LLR: 0). In Table Ill there are two di- the first second trial (HM1 test sets). In this system, we used
alog contexts (BILLING and CONFIRMATION) that stand outplace-holder grammars where needed: for the GREETING,
for their stochastic separation from the other stages of the dial®;PROMPT and BILLING states we used th& model and
Those queries turn out to be the final stages of the human-nf@- the other contexts we designed hand-crafted grammars for
chine interaction. digit recognition [15] and CONFIRMATION questions. In the

Overall, context dependent language models achieve higg¢gcond and third column, each speech recognition language
LLR values for each state of the dialeg. Thus, we have shown model has a uniform lexicon coverage and a vocabulary of
that the adaptation algorithm achieves effective separation fopK words. The word accuracy is improved over the baseline
modeling large-coverage language at a given dialog state. System across all dialog states. We remark that for the CARD
and PHONE NUMBER responses, this is the average accuracy
over all dictionary words (columns 2 and 3), not just the digits
(column 1). A detailed discussion of the language distribution

Recall that\? is a language model trained from HH: peoplesand baseline performance for utterances containing embedded
responses to a human agent’s greeting. The state-conditiatligit sequences is in [15]. We also remark that task accuracy
model for states; was obtained by adapting with the dgtand is much higher than the word accuracy, as detailed in [8].
B, from HM1 training sets. One method to evaluate the utilitfhe latest reported result is 91% correct call-classification on
of this adaptation is to compute their test-set perplexities on ttie HH GREETING-responses [23]. For the number queries
test sets;, drawn from HM1 database, as shown in Table IV. (PHONE and CARD NUMBER), the place-holder grammars

Also shown is the perplexity on HM2 whose data hatbeen in the HM1 trial were digit loops with appropriate constraints
used to compute; and corresponds to a later data collectiorand garbage models at each end. Although most of the tokens
As was reported in [8], the test-set entropy of HH was 18.2. Tl those utterances were indeed digits, there were still 15%
responses to the GREETING prompt in HM1 occurred later mondigit tokens. Thus, adapting a large vocabulary grammar
time, with a modified prompt to “tip our hand” that people werémproves word accuracy over the digit-only grammars.

VI. APPLICATION OF THEADAPTATION ALGORITHM
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VIl. CONCLUSION [19] G. Riccardi and S. Bangalore, “Automatic acquisition of phrase gram-
. . mars for stochastic language modeling,Proc. ACL Workshop on Very
In this work, we have addressed the problem of modeling  Large Corpora Montreal, P.Q., Canada, 1998, pp. 88—196.
spoken language for adaptive human—machine interactions. V&) G. Riccardi, A. Potamianos, and S. Narayanan, “Language model adap-

™ . _ tation for spoken language systems,Firoc. ICSLR Sydney, Australia,
have analyzed the statistical variations of language for human 1998, pp. 2327-2330.

human and human—-machine interactions. We have presenteq@] H. Sakamoto and S. Matsunaga, “Continuous speech recognition using
novel adaptation algorithm for estimating the time and state  dialog-conditioned stochastic language model,Pioc. ICSLR Yoko-

. . hama, Japan, 1994, pp. 841-844.
varying parameters of Ianguage models for natural SpOken d[22] P. Taylor et al, “Using prosodic information to constrain language

alog systems. These models allow users to say anything at any-  models for spoken dialog,” iRroc. ICSLP Philadelphia, PA, 1996, pp.
time in the dialog. The adapted language models fit the data  216-219.

. - 3] J. H. Wright, A. L. Gorin, and G. Riccardi, “Automatic acquisition of
better than the ML estimator for nonstationary process. We ha salient grammar fragments for call-type classification, Firoc. Eu-

quantified the notion of dialog context dependency viathe LLR  rospeechRhodes, Greece, 1997, pp. 1419-1422.

figure of merit and demonstrated the specificity of languagd24] J. H. Wright, A. L. Gorin, and A. Abella, “Spoken Language under-

. . . _ standing within dialogs using a graphical model of task structure,” in
models for each dialog stagg. Then, this algorithm was evalu Proc. ICSLP Sydney, Australia, 1998, pp. 385—-388.

ated with respect to perplexity and word accuracy on a databagss] G. K. zipf, The Principle of Least Effort Reading, MA: Addison-
of 30K human-machine transactions. We have achieved areduc- Wesley, 1949.

tion of 40% in perplexity and of 8.4% in WER over the baseline

system, averaged across all dialog states.
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