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Abstract—We are interested in adaptive spoken dialog systems
for automated services. Peoples’ spoken language usage varies
over time for a given task, and furthermore varies depending on
the state of the dialog. Thus, it is crucial to adapt automatic speech
recognition (ASR) language models to these varying conditions.
We characterize and quantify these variations based on a database
of 30K user-transactions with AT&T’s experimental How May I
Help You?spoken dialog system. We describe a novel adaptation
algorithm for language models with time and dialog-state varying
parameters. Our language adaptation framework allows for rec-
ognizing and understanding unconstrained speech at each stage of
the dialog, enabling context-switching and error recovery. These
models have been used to train state-dependent ASR language
models. We have evaluated their performance with respect to
word accuracy and perplexity over time and dialog states. We
have achieved a reduction of 40% in perplexity and of 8.4% in
word error rate over the baseline system, averaged across all
dialog states.

Index Terms—Language model, large vocabulary speech recog-
nition, spoken dialog system, stochastic finite state machines, sto-
chastic model adaptation.

I. INTRODUCTION

T HERE exist a variety of interactive speech systems in labo-
ratories around the world, some even in actual service [4],

[6], [8], [11], [12]. There are, however, many open issues con-
cerning how to provide robustness for large populations of non-
expert users. Peoples’ spoken natural language is highly vari-
able. A first and well-studied dimension of variation is differ-
ence in language usage among individuals [7]. Different people
use different words and sentence structure to convey the same
meaning [8]. The second variation is over time. The ensemble
user-behavior changes as does the world (e.g., ten years ago no-
body asked for“internet access” ). Plus, there are shifts
in language usage as people adapt to speaking with machines.
The third variation is over dialog state. Depending on the dialog
history, in particular the latest prompt, people will of course re-
spond differently.

In this work, we propose a novel algorithm for stochastic lan-
guage model adaptation that allows for anatural human-ma-
chine interaction. Bynatural, we mean that the machine rec-
ognizes and understands what people actually say, in contrast
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to what a system designer hoped they would say. We enable
the machine to do this by relaxing the constraints on language
coverage at each dialog instant, by estimating time and context
varying features for the probability distribution of a large vo-
cabulary speech recognizer (LVSR).

The naturalnessof our spoken dialog system is quantified
by analyzing the language characteristics of human-human and
human-machine interactions as a function of time. One direct
measure of language complexity is the utterance length distribu-
tion in terms of words. We will show that this figure of merit al-
lows for a partial separation between human-human and human-
machine distributions. Furthermore, language variations in time
and dialog contexts show a need to adapt word probability dis-
tributions without constraining the vocabulary size. The algo-
rithm for language model adaptation is defined as log-likelihood
maximization in the context of the cross-validation technique.
In particular, we show our algorithm outperforms the maximum
likelihood estimates in tracking the time variation of the empir-
ical distribution. The underlying framework for the model esti-
mation and adaptation is the stochastic finite state machine rep-
resentation given by the variable N-gram stochastic automaton
(VNSA) [16], [17]. In these cases, given one or more input
strings as input, the goal is to reestimate state transition proba-
bilities pertaining only to the input set. Input string matching on
a finite automaton is a convenient solution to this problem.

The evaluation of our algorithms has been carried out within
the How May I Help You?spoken dialog system for a call-
routing task [8]. Over three years, we have collected a total of
30K user-transactions at three distinct points in time and for dif-
ferent experimental setups. The language probability distribu-
tions have been shown to change over time and context and the
predictions of the adaptation algorithm have been tested accord-
ingly.

In Section II, we outline the motivations for building adap-
tive spoken language systems. In Section III, we describe the
language variability over these three databases. The language
model adaptation algorithm is described in Sections IV and V.
The algorithm is experimentally evaluated in Section VI, which
gives the improvements in perplexity and word accuracy re-
sulting from the adapted automatic speech recognition (ASR)
language models.

II. SPOKEN LANGUAGE SYSTEMS

Traditionally, for real-world applications, the approach to
handling spontaneous speech is to spot task-specific keywords
and implement system-initiated dialog strategies. In this case
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grammars are hand-crafted to guess the user’s response. Ev-
erything that is not recognized with high acoustic confidence
(within or out of the grammar) is rejected and the user is
reprompted [10], [15]. For example, an automated call routing
system using word-spotting technology and close-ended
prompt would behave as follows (where denotes machine
and denotes a human user).

M) Please say collect, calling card or operator.
U) I would like to reverse the charges to Nancy.
M) Please say collect, calling card or operator.
U) collect, please.
M) Please speak the telephone number now.
U) The number is 1 23 4 5 6 7 8 9 0 areacode 1 2 3.
M) Invalid telephone number. Please speak the telephone

number now.
U) 1 2 3 1 2 3 4 5 6 7 8 9 0.
M) Thank you for calling.

In this example, the system is not able to recognize the user’s
initial request from unconstrained speech. Upon reprompting,
the user uses the menu-speak style and the keyword “collect” is
spotted correctly. Subsequently, the system is not able to recog-
nize the spontaneousnumericlanguage and simply rejects the
second utterance. In order to successfully complete the transac-
tion, the user is required to speak the digit sequence in a highly
constrained manner.

In contrast to this approach, this paper addresses the problem
of creating natural spoken dialog systems for automated
services. For a human-machine interaction to be natural, it is
crucial to have time and dialog-state varying language model
parameters. Within a human-machine dialog a word sequence
should be predicted based on the whole dialog history. For
example the wordyes is a reinforcement feedback signal in the
case of confirmation questions. However, the word “yes” (or
its equivalent) is also used colloquially to mark the beginning
of a sentence without any further semantic connotation. As a
consequence, the probability distribution of “yes” should be
dependent on the dialog context.

A natural spoken dialog system should allow for recovering
the specific goal of the user by having large language lexical
coverage at each stage of the dialog. In our system the available
lexicon is uniform throughout the dialog session so that the un-
derstanding module is reactive to either user’s or system’s initi-
ated topic switch [24]. The following is an illustrative example.

M) How May I Help You?
U) I want to put this on my VISA card.
M) What is your card number?
U) Uh, I can’t find it. Can I make this a collect call?
M) What number would you like to call?
U) Good question. I need John Smith’s number in Newark.
M) Please hold on for directory assistance.

Thus, our goal is to shift the burden from human to machine,
so that the system adapts to people’s language, in contrast to
forcing users to learn the machine’s jargon. In the next sections
we will examine how peoples’ language actually varies in time
and dialog context and how language models can be adapted so
that anatural interaction with the system is possible.

TABLE I
DIALOG STATE AS PROMPT-EQUIVALENCE

CLASSES

III. M EASURING LANGUAGE VARIABILITY

A. Databases

In spoken dialog systems, users’ utterances depend on the
dialog history and should be clustered accordingly. Hence, we
partitioned the data based on the notion of dialog state. Each
dialog state is associated with a set of users’ responses. There
are many notions of dialog state in the literature. In fact, the di-
alog manager in our system [1] hasnoexplicit representation of
state. But, in these experiments we mapped users’ responses into
equivalence classes of prompts, which is a first-order approxi-
mation to dialog history. Examples from these various classes
are shown in Table I.

Over three years, there have been three data collections in
the process of training and adapting language models for the
How May I Help You? spoken dialog system. The users have
always been sampled at random and generally used only once
our automated system. The three databases will be referred to
as HH, HM1, and HM2 sets.

HH) This first collection served as bootstrap for our lan-
guage models. We transcribed only the user’s re-
sponse tohumanagents’ greeting ofHow May I
Help You? The training and test set is composed
of 7844 and 1000 utterance transcriptions, respec-
tively [8].

HM1) The HH training set was used to train language
models for speech recognition and understanding
for the first dialog system forHow May I Help
You? For later stages of the dialog where we had no
training data, we designed place-holder grammars.
We then had the spoken dialog system interact with
live customer traffic and collected the HM1 data-
base. The size of the training and test sets in HM1
are, respectively, 8K and 1K.

HM2) The HH and HM1 data sets were used to train and
adapt the speech recognizer to the different dialog
contexts. We then exposed this new incarnation to
live traffic and gathered the third set, namely the
HM2 database (12K). This dataset has been used
for the system evaluation only.

B. Empirical Word Sequence Distributions

As was observed in[8], the number of words per utterance in
HH is unimodal and highly skewed with a long tail. In Fig. 1,
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Fig. 1. Utterance length distribution for responses to REPROMPT and
GREETING prompt-equivalence class in HH and HM1 databases.

we compare that to the length distribution for responses to the
GREETING prompt in HM1. First, observe that the HM1 his-
togram is bimodal. One mode corresponds to menu-speak: when
people are aware that they are talking with a machine, then
they sometimes speak in short fragments. Interestingly, while
some of the menu-speak corresponds to keywords on deployed
menus, many do not. Instead, these short phrases often corre-
spond to the salient fragments which were derived from the HH
natural language database. Observe also that the second mode
of HM1 is almost identical to the single mode of the HH re-
sponses. Thus, we can view the HM1 GREETING-responses
as a mixture of menu-speak and natural spoken language, with
the second component similar to the natural language in HH.
Also in Fig. 1, we observe that the HM1 distribution tail falls
off much faster than for HH. Upon inspection, we observe that
the very long utterances in HH are accompanied by the agent’s
back-channel utterances such asuh-huh , encouraging the cus-
tomer to continue talking. In the case of HM1, there is no such
back-channel encouragement from the machine, so people don’t
tell long stories as often. Finally, also in Fig. 1, we plot the length
distribution for responses to a reprompt in HM1, observing that
it is also unimodal and similar to the HH distribution of natural
language responses to a human agent. So, it appears that these
people who need reprompting respond in natural language, not
menu-speak. This fact reinforces the need for training language
models based on dialog history.

We then measure the length distribution for responses to
CONFIRMATION prompts, as shown in Fig. 2. The responses
are divided into three categories:explicit affirmations, explicit
denials,and other. Explicit affirmation/denials are sentences
which contain the words “yes” or “no” or some variant thereof
(i.e., the YES-NO equivalence classes). These are sometimes
spoken in isolation, or as a prepend to a natural language
utterance to provide further task information. For example,
responding to the promptDo you want to make a credit
card call?, as a user might respond “Yes, the card number is
xxxxxxx.” Theothercategory occurs during context-switching,
error recovery or user-confusion (see the second example in

Fig. 2. Utterance length distribution for responses to CONFIRMATION
prompt-equivalence class in HM1 database.

Fig. 3. Word frequency versus rank order plots for the six dialog contexts
(log-log scale) in HM1 database.

Section II). Observe that theaffirmation-length distribution
is unimodal and tends to comprise shorter utterances than
the denials. The explicit denials are a bimodal mixture of
short responses plus a second mode at the same position as
for the GREETING prompts. These modes correspond to
people answeringno or some variant (short utterances) or to
people using natural language, with “no” prepended. Thus,
we observe that it is more likely for “no” to be followed by
additional spoken information than it is for “yes.”. Finally, the
other responses also have their mode at that same position,
corresponding to the natural language distribution.

The utterance length distributions over different contexts
give us a statistical description of the language complexity
as measured by the sentence length. Another measure of the
language complexity are the Zipf plots [25] of word relative
frequency versus their rank orders. For natural language,
Zipf’s relation is of the form , where is the relative
frequency, is the rank order and is a constant. In Fig. 3
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we show the log-log Zipf plots of six different dialog contexts,
for the HM1 data. The log-linear dependency fits not only the
open-ended prompts (GREETING and REPROMPT) but also
the CONFIRMATION and BILLING queries. In the case of
CARD and PHONE NUMBER, the curve fitting is composed
of a constant piece (all digits are approximatively equally
likely) and a log-linear piece which accounts for the carrier
phrases within spoken digits and user or system error recovery.
All the empirical utterance length and word distributions
support the argument for language models with large lexicon
coverage at any instant in the dialog. In the next section we
describe how language models are trained for large lexicon
coverage and specific to each dialog context.

IV. L ANGUAGE MODELING

In the standard speech recognition paradigm, language
models exploit the lexical context statistics (word tuples)
observed in a training set to predict word sequence probabilities
on a test set. In that traditional approach, the underlying as-
sumption is that the information source (thenatural language)
is stationary. As a consequence, this evaluation paradigm does
not account for the temporal and contextual language variation
in a human-machine interaction. In contrast with this scenario,
spoken dialog systems pose a challenge to the traditional view
of language model training. In general the word sequence
distribution at stage of the dialog is dependent on the entire
interaction history. Hence, it is more appropriate to conceive
the LVSR as a statistical model that dynamically adapts to
the different stages of the human-machine negotiations for
successfully completing the task.

Learning language models that adapt to different events in
the course of a spoken dialog session is tightly coupled with
the state sequence associated with the human-machine interac-
tion. In general, a dialog state should keep track of the entire
history. However, we will make a first-order approximation and
associate a state to each prompt equivalence class. The word
probability computation will apply to any definition of dialog
state.

The entire transaction is associated with a state sequence and
the model is defined in terms of the states and state transitions.
The state is then used as a predictor to compute the word
sequence probability , as follows:

(1)
The computation of the probability

can be decomposed into two subproblems. The first
addresses the problem of computing the word sequence proba-
bility given the state . The second involves the estimation of

. In previous reported research,
such dialog models have been used to partition the whole
set of utterances spoken in the dialog sessions into subsets
(first subproblem) and then train standard-gram language
models (second subproblem) [11], [21]. A deficiency in that
approach is that the user can only utter words that he has
previously (training set) spoken in a specific dialog state. Such

Fig. 4. Example of a variable Ngram stochastic automaton (VNSA).

language model design does not allow for topic switching,
or on-line error recovery from speech understanding errors.
Thus, the main disadvantages of all previous approaches are
the poor language coverage at each state of the dialog and data
fragmentation. In other related work, the estimation problem
is solved by linear interpolation [21] or maximum entropy
models [14], speaker backoff models [2], or MAP training [5].
In this work we take the approach of training language models
for each state in such a way that the user can interact in an
open-ended way without any constraint on the expected action
at any point of the negotiation.

In order to condition the expected probability of any event at
state we propose a novel adaptation algorithm for self-orga-
nizing stochastic finite state machines. At the same time, the
word probability distribution is estimated to account for any
possible event at any instant of the dialog. In the following sec-
tion, we outline the stochastic finite state machine representa-
tion of the language model and the novel adaptation algorithm.

A. Stochastic Finite State Machines

Our approach to language modeling is based on the VNSA
representation and learning algorithms first introduced in [16]
and [17]. The VNSA is a nondeterministic stochastic finite state
machine (SFSM) that allows for parsing any possible sequence
of words drawn from a given vocabulary. In its simplest im-
plementation the state in the VNSA encapsulates the lexical
(word sequence) history of a word sequence. Each state recog-
nizes a symbol , where is the empty string.
The probability of going from state to (and recognizing
the symbol associated with ) is given by the state transition
probability, . Stochastic finite state machines represent
the probability distribution over all possible word sequences in a
compact way. The probability of a word sequencecan be as-
sociated with state sequences and to the prob-
ability . For a nondeterministic finite state machine (
) the probability of is then given by .

Moreover, by appropriately defining the state space to incorpo-
rate lexical and extra lexical information, the VNSA formalism
can generate a wide class of probability distribution (i.e., stan-
dard word -gram, class-based, phrase-based, etc.) [17]–[19]. In
Fig. 4, we plot a fragment of a VNSA trained with word classes
and phrases. State zero is the initial state and final states are
double circled. The transition from state zero to state one car-
ries the membership probability , where the class con-
tains the two elementscollect, credit card . Then, the prob-
ability of going from state zero to three is the class-based es-
timate `` '' `` '' . The tran-
sition from state four to state five is abackoff transition to a
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Fig. 5. Probability of the word classes YES, NO, and OTHER for three points in time (HH, HM1, and HM2 databases) and for two dialog states.

lower order -gram probability. The state two carries the infor-
mation about the phrasecalling card. The state transition func-
tion, the transition probabilities and state space are learned via
the self-organizing algorithms presented in [17].

V. LANGUAGE MODEL ADAPTATION

In spoken language system design, the state of the dialogis
used as predictor of the user response. For example, if the com-
puter asks a CONFIRMATION question, then the most likely re-
sponse will contain language in the YES-NO equivalence class.
However, in order to provide robustness to user-initiated context
switch, or system errors, we want to enable the system to move
from one state to any other state of the dialog withouta priori
defined constraints. We achieve this goal by training language
models that recognize unconstrained utterances for each state

. At the same time we adapt language models for each stage
based on the expected users’ responses to open-ended prompts.

In Fig. 5, we plot the word distribution for the first token of
a sentence for different dialog contexts. The distributions are
computed along two dimensions, time (HH, HM1, and HM2
data sets) and dialog contexts (GREETING and CONFIRMA-
TION).1 In particular, we define three word classes: YES and
NO containing all the equivalent words for “yes” and “no,” re-
spectively, and the OTHER (OTH) word class subsuming the re-
maining words in the dictionary. Note that in the HH database,
the word class YES occurs 50% of the times for the GREETING
stage, while its occurrence on the HM1 and HM2 GREETING
sets is negligible. This is an interesting characterization of lan-
guage usage in human-human and human-machine interactions
(see also menu-speak effect in Fig. 1).

1Recall from Section III that for the HH set we transcribed only the responses
to the GREETING prompt.

A. Adaptation Algorithm

The first step of the adaptation algorithm consists of parti-
tioning the empirical data into all the available dialog contexts.
The set of all user’s observed responses at a specific stage
of the dialog is split into training , development ( ), and
test ( ) sets. We assume that there is an initial modelto
bootstrap the adaptation algorithm and provide a probability es-
timate for all words

(2)

where the model is the generic adapted language model.
The maximum likelihood (ML) solution to the problem in (2) is
given by a model exclusively trained on. However, the size
of the training set has generally insufficient statistics for reli-
able estimates of the model probabilities. Thus, the formulation
of the adapted language model is given in terms of a convex
interpolation of the language model and a state dependent
model . This formulation is consistent with the Bayesian or
maximuma posteriori(MAP) training proposed in the literature
in the case of adaptation from small data sets [5], [21]. Recall
that the language model is composed of the state transition
function

and (3)

where is the set of all the SFSM states, and the state transi-
tion probabilities of the kind , where
for . In general, the language model has larger
coverage than the data represented in. Moreover, the model

should be estimated from the statistics drawn from. Then
for to have a high coverage language model while modeling
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the data source ( ), the solution is to bootstrap the state tran-
sition function from and compute the ML estimates, over

. In practice, we replace the ML estimate with the Viterbi ap-
proximation in order to prune the low probability state sequence
paths. As for the estimation of the model, we run Viterbi
training over each set starting from the generic model
and estimate the transition probabilities. In order to account for
unseen transitions, we smooth the transition probabilities with
the standard discount techniques discussed in [17]:

(4)

where ( ) is the number of times the state(state transi-
tion ) is selected by the Viterbi decoding and is the
number of transitions leaving. The transition probabilities for
the model are then computed as follows:

(5)

Recall that in a nondeterministic stochastic automaton there
are transitions where either is recognized or the epsilon
symbol gets processed (also known asepsilon move). Theep-
silon moveis encountered typically for backoff purposes or non-
terminal symbol resolution (e.g., class-based language models).
Thus, (5) applies to both cases in a unified manner, in contrast to
the traditional linear interpolation of-gram probabilities [9].

The solution to (2) with respect to the parameterscannot
be given in an explicit form. However, for the adaptation form in
(5), we use the cross-validation paradigm over the development
sets to find the local optimum over a finite number of
values. ( ). Whereas the data is insufficient for CARD
and PHONE NUMBER cases, is given a fixed value of 0.5.
When a model is not available for bootstrap, a context inde-
pendent variable N-gram stochastic Aautomaton can be trained
by pooling together the training sets [20] and still achieving
accurate state-dependent language models. The complete block
diagram, describing the adaptation scenario and adaptation al-
gorithm steps is shown in Fig. 6.

An important issue in tracking the variability of a probability
distribution is the stochastic separation from a prior or alternate
distribution. The problem is to measure the similarity between
the model and or . If the two distributions are sim-
ilar the sample data they have been estimated is most likely
drawn from the same random source. A classical measure of
stochastic separation used in the decision theory for hypothesis
testing is the log likelihood ratio (LLR). We extend this notion
to the token-level log likelihood ratio computed over the devel-
opment set :

LLR (6)

where is the number of tokens in . The LLR measure
over all possible models can be positive or negative. If
it is a large positive (negative) number, that means thatis
modeling the data better (worse), in the log likelihood sense,

Fig. 6. Block diagram for the language model adaptation.

TABLE II
TEST SET PERPLEXITY FORSTATIONARY AND TIME-VARYING MODEL

than . It is interesting to note that LLR corresponds to
the entropy gain of the model with respect to :

LLR (7)

where, for the entropy, we have used the ergodic assumption of
the information source instantiated in, and . We will use
the LLR figure of merit to validate the estimates computed
through (2) in the next section.

B. Stationary versus Time and State Varying Stochastic Models

An important characterization of an information source is its
stationarity with respect to the parameters of its probability dis-
tribution.2 If we consider the sample data at each instant an in-
stantiation of a stationary process, then the ML estimates can be
computed by pooling together the data sampled at that instant.
On the other hand, if we wish to model a time-varying source,
we need to stochastically update the parameters of the proba-
bility distribution. In the case ofspontaneousspoken language,
the most appropriate working hypothesis is to assume the non-
stationarity hypothesis for two reasons: not only do the statistics
of natural language vary over time and from one dialog state to
another, but the interface of the dialog system may be improved
from time to time, eliciting different kinds of spoken responses.
Moreover, from a practical point view it is not always the case
that the databases are available for on-line adaptation.

In Table II, we compare the test set perplexity of the stationary
and stochastically adapted models. For the stationary model, we
train ML language models by pooling together the HH data and
the HM1 training sets.

2Here we consider stationarity with respect to the mean.
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TABLE III
AVERAGE STOCHASTIC SEPARATION FORCONTEXT-DEPENDENT

LANGUAGE MODELS

For each dialog state , the stochastic mapping
( GREETING, BILLING, ) has been estimated with the
algorithm described in the previous section. In Table II, we show
the test perplexity measured on the HM1 test sets. In the
case of GREETING and REPROMPT stages, the adapted model
slightly outperforms the ML estimates in tracking language vari-
ation over time and nature of interaction (human-humanversus
human-machine). In the other cases, the performance of the
adapted models show that they are very effective in making the
backgroundmodel tailored to the statistics of dialog con-
texts with relatively little amount of data.

While test set perplexity is a measure of a stochastic model’s
prediction power, it also useful to quantify the distance between
language models with the LLR figure of merit. In fact, users’
responses might overlap more in some stages of the dialog than
in others. For example, the responses to PHONE and CARD
NUMBER requests have similar word distributions (see Sec-
tion III-B) and in fact their LLR is small. In Table III, we
report the average LLR for a specific dialog state . The
average LLR is given byLLR LLR , where
there are five language models competing with on the
same development set . As pointed out in (7), the LLR
figure of merit can interpreted as entropy gain (in bits), so that
a one bit entropy gain corresponds to halving the perplexity
(equivalent models have LLR ). In Table III there are two di-
alog contexts (BILLING and CONFIRMATION) that stand out
for their stochastic separation from the other stages of the dialog.
Those queries turn out to be the final stages of the human-ma-
chine interaction.

Overall, context dependent language models achieve high
LLR values for each state of the dialog. Thus, we have shown
that the adaptation algorithm achieves effective separation for
modeling large-coverage language at a given dialog state.

VI. A PPLICATION OF THEADAPTATION ALGORITHM

Recall that is a language model trained from HH: peoples’
responses to a human agent’s greeting. The state-conditional
model for state was obtained by adapting with the dataand

from HM1 training sets. One method to evaluate the utility
of this adaptation is to compute their test-set perplexities on the
test sets drawn from HM1 database, as shown in Table IV.

Also shown is the perplexity on HM2 whose data hasnotbeen
used to compute and corresponds to a later data collection.
As was reported in [8], the test-set entropy of HH was 18.2. The
responses to the GREETING prompt in HM1 occurred later in
time, with a modified prompt to “tip our hand” that people were

TABLE IV
PERPLEXITY REDUCTION VIA ADAPTATION TO DIALOG STATE

TABLE V
PERCENTWORD ERRORRATE (WER) FOR STATE-ADAPTED LANGUAGE

MODELS. �(WER) IS THE WER RELATIVE IMPROVEMENT BETWEEN THE

BASELINE (SECONDCOLUMN) AND ADAPTED MODELS(THIRD COLUMN)

talking with a machine [3]. The language variation in both time
and state is illustrated by each row of Table IV. The adapted
language model provides a significantly lower perplexity for
the human/machine data than the human/human data. Observe
also that the adapted model does a better job of modeling the
GREETING-responses in HM1 and HM2, as compared to HH.
This confirms our intuition that people’s responses are “sim-
pler” in HM1 (or HM2) than HH, as discussed also in our earlier
analysis of utterance-length.

In Table V, we provide corresponding measurements of word
accuracy at each dialog state for these adapted models.

The first column gives the speech recognition results of
the first second trial (HM1 test sets). In this system, we used
place-holder grammars where needed: for the GREETING,
REPROMPT and BILLING states we used the model and
for the other contexts we designed hand-crafted grammars for
digit recognition [15] and CONFIRMATION questions. In the
second and third column, each speech recognition language
model has a uniform lexicon coverage and a vocabulary of
3.6K words. The word accuracy is improved over the baseline
system across all dialog states. We remark that for the CARD
and PHONE NUMBER responses, this is the average accuracy
over all dictionary words (columns 2 and 3), not just the digits
(column 1). A detailed discussion of the language distribution
and baseline performance for utterances containing embedded
digit sequences is in [15]. We also remark that task accuracy
is much higher than the word accuracy, as detailed in [8].
The latest reported result is 91% correct call-classification on
the HH GREETING-responses [23]. For the number queries
(PHONE and CARD NUMBER), the place-holder grammars
in the HM1 trial were digit loops with appropriate constraints
and garbage models at each end. Although most of the tokens
in those utterances were indeed digits, there were still 15%
nondigit tokens. Thus, adapting a large vocabulary grammar
improves word accuracy over the digit-only grammars.
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VII. CONCLUSION

In this work, we have addressed the problem of modeling
spoken language for adaptive human–machine interactions. We
have analyzed the statistical variations of language for human-
human and human–machine interactions. We have presented a
novel adaptation algorithm for estimating the time and state
varying parameters of language models for natural spoken di-
alog systems. These models allow users to say anything at any-
time in the dialog. The adapted language models fit the data
better than the ML estimator for nonstationary process. We have
quantified the notion of dialog context dependency via the LLR
figure of merit and demonstrated the specificity of language
models for each dialog stage. Then, this algorithm was evalu-
ated with respect to perplexity and word accuracy on a database
of 30K human-machine transactions. We have achieved a reduc-
tion of 40% in perplexity and of 8.4% in WER over the baseline
system, averaged across all dialog states.
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