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Abstract—Spoken language understanding (SLU) is concerned
with the extraction of meaning structures from spoken utter-
ances. Recent computational approaches to SLU, e.g., conditional
random fields (CRFs), optimize local models by encoding several
features, mainly based on simple n-grams. In contrast, recent
works have shown that the accuracy of CRF can be significantly
improved by modeling long-distance dependency features. In
this paper, we propose novel approaches to encode all possible
dependencies between features and most importantly among parts
of the meaning structure, e.g., concepts and their combination.
We rerank hypotheses generated by local models, e.g., stochastic
finite state transducers (SFSTs) or CRF, with a global model. The
latter encodes a very large number of dependencies (in the form of
trees or sequences) by applying kernel methods to the space of all
meaning (sub) structures. We performed comparative experiments
between SFST, CRF, support vector machines (SVMs), and our
proposed discriminative reranking models (DRMs) on represen-
tative conversational speech corpora in three different languages:
the ATIS (English), the MEDIA (French), and the LUNA (Italian)
corpora. These corpora have been collected within three different
domain applications of increasing complexity: informational,
transactional, and problem-solving tasks, respectively. The results
show that our DRMs consistently outperform the state-of-the-art
models based on CRF.

Index Terms—Kernel methods, machine learning, natural lan-
guage processing (NLP), spoken language understanding (SLU),
stochastic language models, support vector machines (SVMs).

I. INTRODUCTION

S POKEN language understanding is concerned with the
task of mapping utterances into meaning representations

based on semantic constituents. These are instantiated by word
sequences and are often referred to as concepts, attributes, or
semantic tags. Traditionally, grammar-based methods have
been used but more recently machine learning approaches to
semantic structure computation have received a lot of attention,
due to their performance and incremental learning ability [1].
State-of-the-art learning algorithms, e.g., conditional random
fields (CRFs) [2], are successfully applied to perform concep-
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tual tagging at word level; these models exploit mainly features
based on -grams.

One drawback of the above-mentioned methods is that the
word dependencies captured by such features have their scope
constrained by the locality of the target word. To overcome this
limitation, CRF models capable of capturing long-dependency
features, i.e., the arbitrary interactions and inter-dependencies
that exist in the observation sequences, have been applied, e.g.,
[3]–[6]. The number of all such possible features is extremely
large; thus, the subset of relevant features must be specified
and designed in advance, e.g., according to a feature-generating
scheme based on domain knowledge.

In this paper, we contribute on the above-mentioned research
in different ways: first, we effectively model dependencies
between features and most importantly among parts of the
meaning structure, e.g., concepts, features and their combina-
tions. To extract the dependencies from the meaning structure,
this must be available at learning time. Thus, we approach SLU
by reranking the hypotheses generated by a baseline model:
in our case we use two different local models, i.e., stochastic
finite-state transducers (SFSTs) [7] and CRF [2]. Our discrim-
inative reranking is modeled with support vector machines
(SVMs), which also enable the use of kernel-based learning [8].

Second, we exploit kernel methods (e.g., see [9]) to generate
the space of all possible dependencies between features and con-
cepts at any distance in the observation. More specifically, we
design sequential and tree structures to describe the concep-
tual meaning structure and compactly represent semantic and
syntactic dependencies [10]–[13]. Then, we apply tree and se-
quence kernels developed in [14]–[20] to blow up the above-
mentioned structures in the space of substructures. These corre-
spond to dependency features between any arbitrary number of
basic features and concepts at any distance.

Third, since rerankers may be limited by the quality of the
small number (e.g., generally in the order of ten) of hypotheses
produced by the local model, we propose a semantic inconsis-
tency metric (SIM) capable of selecting accurate hypotheses
from an initial large set. Although such metrics is domain spe-
cific, it can be easily adapted to other natural language pro-
cessing tasks.

Finally, we improve our DRMs by designing a simple but
effective meta-model selection strategy. For each utterance, the
strategy chooses to apply or not reranking by comparing the
classification confidence of the local and reranker models.

Regarding the empirical validation, we tested our DRMs on
different domains, languages and noisy conditions. More pre-
cisely, we used two different kinds of input: manual transcrip-
tions of spoken sentences and automatic transcriptions gener-
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ated by automatic speech recognition (ASR) systems. We com-
bine them with three of the most relevant SLU annotated cor-
pora in different languages: the well-known ATIS corpus [21],
the French MEDIA corpus [22], and the Italian conversational
corpus acquired within the European project LUNA [10].

Such corpora are very different with respect to the task they
address (informational, transactional, and problem-solving
tasks), speaking styles and the semantic complexity in terms
of number of semantic classes and characteristics of user
utterances. Therefore, they help us to consider SLU in several
conditions: domain, language and style of spoken utterances.
The results show that our best DRMs significantly improve the
state-of-the-art models based on CRF, across all domains/ex-
periments, e.g., up to 2 and 3 absolute percent points (about
7% and 10% relative error reduction) on MEDIA and LUNA,
respectively. The less accurate FST model is improved by 6
points (about 10% relative error reduction).

The paper is organized as follows. In Section II, we define the
problem of SLU in the context of spoken conversational systems
by also illustrating the corpora studied in this paper. Section III
illustrates our proposed DRMs whereas Section IV shows their
evaluation across different domains, corpora and languages. Fi-
nally, Section V provides the final remarks in the light of pre-
vious work.

II. SPOKEN LANGUAGE UNDERSTANDING IN ATIS, MEDIA,
AND LUNA CORPORA

The novelty of our work relies on the design of new reranking
models, which learn to sort the annotation hypotheses gener-
ated by SLU baseline models. The SLU hypotheses refer to a
meaning representation of spoken utterances and they include
a complete mapping from words into semantic categories1 (or
concepts). This process is typically divided in two steps: text
segmentation and labeling. The concept lexicon for the latter is
acquired from a knowledge base such as a relational database or
domain ontology of a target application task. In the case of the
ATIS corpus [21], the knowledge base is a relational database
while for the MEDIA [22] and the LUNA corpora [10] a domain
ontology was designed (see [23]] for the LUNA ontology). In
the following, we describe the typical format of annotation hy-
potheses for the corpora above along with the description of the
segmentation and labeling phases, where the latter also includes
the extraction of attribute-values.

A. Description of the SLU Corpora

The Air Travel Information System (ATIS) corpus [21] has
been used for the last decade to evaluate models of Automatic
Speech Recognition and Understanding. It includes speech ut-
terarnces acquired via a Wizard-of-Oz (WOZ) approach, where
users ask for flight information. Statistics for this corpus, i.e.,
turns, tokens (tok.) constituted by words or concepts (conc.),
vocabulary items (voc.), percentage of out of vocabulary token
(OOV%) for training (train.) and test sets, are reported in Table I.

1Their relations are useful to form an interpretation exploitable in a conver-
sation context [1]

TABLE I
STATISTICS OF THE ATIS TRAINING AND TEST SETS USED IN THE EXPERIMENTS

TABLE II
STATISTICS OF THE MEDIA TRAINING, DEVELOPMENT AND

EVALUATION SETS USED FOR ALL EXPERIMENTS

TABLE III
STATISTICS OF THE LATEST VERSION OF THE LUNA TRAINING, DEVELOPMENT

AND EVALUATION SETS USED FOR ALL EXPERIMENTS

The corpus MEDIA has been collected within the French
project MEDIA-EVALDA [22] for development and evalua-
tion of spoken understanding models and linguistic studies.
The corpus is composed of 1257 dialogs (from 250 different
speakers) acquired with a WOZ approach in the context of
hotel room reservations and tourist information. Statistics on
transcribed and conceptually annotated data are reported in
Table II. In this case, the corpus is divided in sentences (sent.).

The LUNA corpus, produced in the homonymous European
project, is the Italian corpus of conversational speech. It has
been collected in a contact center providing help-desk support
for software and hardware [10]. The data is organized in tran-
scriptions and annotations of speech based on a new multi-level
protocol. Here, we provide for the first time results on the latest
version of the corpus. The data used for our experiments is ex-
tracted from 723 Human–Machine dialogs (HM) acquired with
a WOZ approach. The data has been split, with respect to sen-
tences, in training, development and test sets. Statistics of this
corpus are reported in Table III.

1) Examples of SLU for Different Corpora: Sections III–V
show the conceptual annotation available for the three men-
tioned corpora, where the difference and complexity are high-
lighted.

2) ATIS: Given the following sentence “I would like a flight
from Phoenix to San Diego on April First”, an example of the
concept annotation of the ATIS corpus is

where , are do-
main concepts used for departure and arrival
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cities, respectively. and
are used for departure date

month and day, respectively. is the concept tag mapping
words not covered by the knowledge base.

3) MEDIA: As an example taken from the MEDIA corpus,
let us consider the sentence: “Je veux une chambre double” that
translates to “I want a double room”, a semantic representation
is

where and are domain con-
cepts modeling number and type of rooms, respectively.

4) LUNA: Given the transcription: “Buongiorno io ho un
problema col mio monitor da questa mattina non riesco piu’ ad
accenderlo” from the LUNA corpus (“Good morning I have a
problem with my screen, I cannot turn it on any more since this
morning”), an example of the corresponding semantic annota-
tion is

'

In this case, the domain concepts are HardwareProblem.
type, Peripheral.type, used to model types of hardware
problem and of peripheral devices, Time.relative, used for
relative time expressions (this morning, this afternoon, two
days ago, etc.), HardwareOperation.negate and Hardware-
Operation.operationType, used to describe actions performed
on hardware components.

Note that in the Italian corpus concepts are expressed as fields
of a class, so that different concepts belonging to the same class
can be merged to construct more general and abstract semantic
objects like Hardware. As shown in [23], this representation
can be exploited to perform semantic analysis based on domain
ontology relations.

5) Differences Among Corpora: Hereafter, we report shared
and different corpus characteristics:

First, application domain. From this point of view ATIS and
MEDIA are rather similar, the former is a corpus of flight in-
formation and reservation whereas the latter is a corpus of hotel
information and reservation.

Second, data collection paradigm. All corpora have been ac-
quired with a WOZ approach but with a different setup. In ATIS
the data acquisition unit is a single turn, where the users ask
flight information, whereas in MEDIA and LUNA the units are
entire dialogs.

Third, size of the data. LUNA is the smallest corpus (3171
turns for training), while MEDIA is (almost 13 000 sentences
for training). ATIS is in the middle with roughly 5000 sentences
for training.

Finally, task complexity. It is usually measured in terms of
number of concepts with respect to the size of the available
training data. From this point of view LUNA with only 42 con-
cepts is the simplest task. ATIS and MEDIA have a comparable
complexity since the former includes 69 concepts whereas the
latter contains 65 concepts. Nevertheless, MEDIA is much more
complex since some of its concepts have different specifiers and

modes (see [22]). Thus, the real number of tags to be recognized
in MEDIA increases to 99.

Moreover, it should be noted that the automatic annotation
of ATIS can be easier than in other corpora for two reasons. 1)
Most sentences have the form: “Information Request about”
flights from DEPARTURE_CITY to ARRIVAL_CITY TIME,
where “Information Request about” is one of the several
ways of asking information, DEPARTURE_CITY and AR-
RIVAL_CITY are the names of two cities and TIME is the
specification of a day and/or hour of departure. This kind of
sentences with small variations constitute more than 90% of the
corpus. 2) In the data available for the SLU task on ATIS, which
is the same used in [24] and in [25], concepts are always associ-
ated with a single token2 so there is no need of segmenting them
using BIO-like markers (as shown in Section II). For example,
the previous ATIS sentence, using the annotation style of the
Media or Italian LUNA corpora, would be annotated as

That is, the concepts and
would have a span of two and three words respectively. In con-
trast, ATIS only concerns with the problem of token labeling,
there is no need to carry out concept segmentation. For these
reasons, our work on ATIS only relates to concept labeling: the
segmentation can be attained with the deterministic processing
of matching word surface forms.

The task complexity is also affected by the characteristics of
utterances. ATIS and MEDIA were acquired with a WOZ ap-
proach with optimal environmental setup (high-quality micro-
phones and absence of noise in the channel) whereas LUNA was
acquired from customers calling call center operators. Addition-
ally, 1) utterances in the LUNA corpus are spontaneous, thus in-
cluding typical phenomena such as disfluencies, ill-formed tran-
scriptions and noisy signals; 2) the annotation of the turns in the
Italian LUNA corpus was done taking into account turn con-
text. The same words can be annotated with a different concept
in case the context is different. For example, the phrase “it is
not working” can be a “HardwareOperation” in case it refers
to a “Peripheral,” while it is a “SoftwareOperation” if it refers
to “Software.” For these characteristics, even if the number of
concepts to be recognized is smaller, the LUNA corpus is not
simpler than the other two.

B. Concept Segmentation and Labeling

1) Concept Segmentation: One important phase in the SLU
process is the concept chunking, i.e., concepts can span over
more than one word. In order to have a one-to-one associa-
tion between words and concepts, the beginning of a concept is
distinguished from its other components using markers equiva-
lent to those of the BIO notation [26]. In particular, the Outside
marker is replaced by the tag introduced before. Using
this notation the semantic representation for the example shown
above would be

2e.g., San Diego is mapped into San-Diego
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'

From this representation attribute names can be easily recon-
structed and attribute values can be extracted.

In the remainder of the paper, we will evaluate the SLU sub-
tasks of concept segmentation, labeling and value extraction in
the context of reranking frameworks.

2) Normalization and Value Extraction: Once a label (con-
cept or attribute) has been assigned by an automatic model, also
the attribute values, corresponding to surface forms, have to be
assigned. Thus, an additional step after concept labeling is the
normalization and value extraction. In the LUNA example, a
possible attribute-value interpretation would be

This is the so-called flat attribute-value annotation output by the
SLU module. Note that at this level the tags are removed
since they are used to annotate words not relevant for the task
and so they bring no semantic information. The extracted values
are normalized word surface forms, i.e., keywords, used for each
concept (in some cases words are also converted into digits).

The are two solutions that can be used to perform the value
extraction phase of the SLU task:

a) rule-based approaches, such as Regular Expressions
(RE) to map the words realizing a concept into the
corresponding value. These are defined for each at-
tribute-value pair: given a concept and its realizing
surface, if a grammar rule, associated with the target
concept, matches such surface the corresponding value is
returned.

b) Probabilistic models, which learn the conditional proba-
bility from manually annotated data, where

is a value, is a concept and is the sequence of
words.

For the example in the Italian LUNA corpus shown above,
where hardware objects are defined, a set of possible surfaces
that can be mapped to the concept “Peripheral” is: i) screen; ii)
the screen; iii) with my screen …

Note that all these surfaces share the same keyword, i.e.,
“screen”, which can be chosen as a value. All the results in this
paper were obtained with approach a) although some prelimi-
nary experiments reveal that b) is promising and to our knowl-
edge novel. In more detail, the approach a) must cope with rules
that can be in general ambiguous: more than one rule can be
applied to the same surface form to extract different values,
although such rules are a small subset. Indeed, applying only
unambiguous rules gives already acceptable results on manual
transcriptions. On automatic transcriptions rules are tuned by
hand using complex regular expressions and sorted consistently
with respect to two parameters: 1) length of the surface instanti-
ating a concept and 2) rule occurrences. Point 1) avoid applying
general rules when more specific ones are available (longer sur-
face). A typical example of point 1) is present in MEDIA: sur-

faces like “festival de la chanson” are applied before “festival”
for the concept event. Point 2) is used when no other method can
be applied: the most frequent rule (in the training set) is applied.

III. DISCRIMINATIVE RERANKING BASED

ON KERNEL METHODS

Previous work has shown that the models typically used for
SLU, although accurate, cannot easily encode long-distance
dependency relations that exist in the observation and label
sequences. Indeed, a fully automatic learning approach, which
does not a priori know which are the relevant dependencies,
has to include all possible n-grams in the sequences to attempt
capturing all interactions. The number of such n-grams is
extremely large,3 consequently, such approach is not practically
feasible. Another more practical method is the so-called guided
approach, which needs to specify and design the features
promising for capturing meaningful relations in advance, e.g.,
according to a feature-generating scheme based on domain
knowledge. Unfortunately, this requires a deep understanding
of the language phenomena being studied. A middle approach
concerns the approximation of the required feature space by
automatically looking for promising dependency features, e.g.,
[6], [27]. This is very interesting but, being an approximation,
it may not generate all the required features.

Our approach implements exhaustive feature generation by
exploiting kernel methods, which allows for including all pos-
sible dependency features in SVMs. Most importantly, we also
propose features capturing the dependency between concepts
and standard features (such as words and morphology features).
In more detail, we represent the dependency in the conceptual
structure by means of semantic trees and sequences that we de-
signed. Then, we apply tree and sequence kernels defined in
[16], [18], [20] for extracting all possible substructures, which
correspond to different semantic/syntactic dependency features.
It should be noted that ours is the first comprehensive study on
using such rich semantic features for SLU.

Since the conceptual annotation is needed to capture meaning
structures at learning and classification time, we approach SLU
by reranking hypotheses, e.g., those provided by local models.
This approach is preferable to structural methods, e.g., [28],
as their efficient use with tree and string kernels is an open
issue. Our DRMs are essentially classifiers of hypotheses pairs

, where , are included in the -best list (extracted
from the hypothesis lattice). These classifiers learn if is more
accurate than and, for this purpose, they exploit the whole
utterance transcription annotation. This is encoded by our con-
ceptual structures, which are processed by structural kernels.

In Sections IV and V, we describe the baseline models used
to generate the semantic hypotheses, the reranking model based
on SVMs and the tree-structured features used to represent the
hypotheses above. Finally, we describe two enhancements for
discriminative reranking: the semantic inconsistency metric and
the rerank selection strategy.

A. Baseline Models

The preliminary set of hypotheses of the utterance labeling
can be produced by any SLU approach of any complexity, e.g.,

3For example for CRF models the number of features is exponential in the
length of the label history (see [2])
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Fig. 1. DRM computational architecture showing the fat pipeline, from speech
input to the SLU hypotheses reranking. The ASR module generates n-best or
word lattice, which are used as input to a SLU chunker (segmentation and la-
beling) such as CRF or FSTs. Such hypotheses are used by the DRM module to
optimally rerank them using lexical and structural kernels.

the model proposed in [27], which already provides a set of de-
pendency features. However, starting from simpler methods of-
fers more appealing advantages: i) the results are easily repro-
ducible by other researchers and ii) in case of the corpora we
consider, such basic approaches are also the state-of-the-art.

Following this idea, we used two different approaches: a) gen-
erative models, whose probability distributions typically esti-
mate the joint probability of words and (shallow) parses; and
b) discriminative models, which learn a classification function
from words to concepts by minimizing the training set error.

In particular, we adopted the generative model based on
weighted finite state transducers (FSTs), which instantiate SLU
as a translation process from words to concepts. This model has
shown high accuracy despite its simplicity [7]. One interesting
aspect is its easy integration with computational architecture of
automatic speech recognition systems, where the output can be
word lattices encoded as a weighted FSTs.

Additionally, we used a recent approach for SLU based on
CRF [2]. These are undirected graphical models, which achieve
state-of-the-art in SLU (e.g., for MEDIA and LUNA). Their
training is based on conditional probabilities taking into account
many features of the input sequence.

B. Reranker Model

Our reranking framework is the one designed in [11]–[13] and
detailed in Fig. 1: first an ASR outputs a speech transcription,
which will be the input of the baseline SLU models. Alterna-
tively, manual transcription can be utilized to study directly the
performance of SLU models, without the negative impact of the
ASR in the overall pipeline.

Second, the baseline SLU model, in our case the SFST or the
CRF, takes the transcription of a spoken sentence as input and
produces the most likely conceptual annotations for the sen-
tence. These are ranked by the joint probability of the Stochastic
Conceptual Language Model (SCLM) in case of SFST or by the
global conditional probability of the concept sequence given the
input word sequence when CRF are used. The -best list pro-
duced by the baseline model is the list of candidate hypotheses,
e.g., , used in the next reranking step.

Third, the SIM module evaluates and selects the semantic
consistency of ASR hypotheses. This processing step is de-
scribed in Section III-E and it is used to improve the quality of
the -best list.

Next, the produced hypotheses are used to build pairs, e.g.,
or . We build training pairs such that a

reranker can learn to select the best between two hypotheses
of a pair, i.e., the hypothesis containing the least number of
mistakes with respect to a reference metric. Such classifier can
be applied to provide the final ranked list.

Finally, the confidence of the reranker, i.e., the SVM score,
can be optionally compared with the one of the basic SLU model
to select the most reliable output (RRS). Hereafter, we provide
more details on the training of our rerankers.

1) Reranker Training and Classification: Given the fol-
lowing two annotations of the input sentence “ho un problema
col monitor” (“I have a problem with the screen”):

--- ---
--- ---
--- ---
--- ---

we build the pair , where , and
are the assigned domain concepts. A pair is

a positive training instance if the first hypothesis ( in the ex-
ample) has a lower concept annotation error rate than the second

, with respect to the reference manual annotation, and neg-
ative otherwise. In our example, the second annotation is less
accurate than the first since is erroneously annotated
as and “col monitor” is erroneously split in two dif-
ferent concepts.

In order to effectively train the reranker, we proceed as fol-
lows: first, we select the best annotation in the -best list
by measuring the edit distance of all hypotheses with respect
to the manual annotation; second, we generate the positive in-
stances as pairs , for and , and nega-
tive instances as pairs . At classification time, since we
cannot compare hypotheses with the reference, all possible pairs

, with , , and , must be generated.
Nevertheless, using the simplification described in [29], we can
use single hypotheses instead of pairs;4 thus, the classification
instances are only , instead of . This simplification is based
on the fact that, as pairs for the training phase are symmetric, the
final model can be represented as a hyperplane passing through
the origin of coordinates, thus also at classification phase, the
score of a pair is the opposite of the symmetric pair

.

C. Reranking Kernel

We adopt the kernel introduced in [30] for preference
ranking with ordinal regression and used in [29] for parse tree
reranking and in [17], [19] for predicate argument structure
reranking. Given the definition of a generic pair of hypotheses

, the kernel applied to two pairs ,
computes

(1)

where can be any kernel function, for example those de-
scribed in [15], [18], i.e., string kernel (SK), syntactic tree kernel
(STK), and partial tree kernel (PTK).

It is worth noting that: first, our reranking schema, consisting
in summing four different kernels, has been already applied in

4More precisely, a pair with only one hypothesis, i.e., �� � ��
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Fig. 2. Examples of “FLAT” and “MULTILEVEL” semantic trees used for STK and PTK.

Fig. 3. Example of “FEATURES” semantic tree used for STK or PTK.

[29], [31] for syntactic parsing reranking, where the basic kernel
was a tree kernel.

Second, in [32], an equivalent reranking model was applied
to different candidate hypotheses for machine translation, but
the goal was different and, in general, simpler: our task consists
in selecting the best annotation of a given input sentence, while
in [32], the task is to distinguish between “good” and “bad”
translations of the same sentence.

Third, the reranking approach brings several advantages, but
also some disadvantages as the reranker training time is affected
by the one of SVMs, which are trained with a quadratic pro-
gramming algorithm. However, there are very fast approaches
[33], [34] and methods transforming structural kernels in linear
kernels [35], for which linear training and testing algorithms
exist (e.g., the cutting-plane algorithm).

Finally, two main advantages can be observed in the reranking
model. The first is the ability to put together characteristics of
two different models. The second is that using kernels like string
and tree kernels, the reranking model can capture arbitrarily
long-distance dependencies between words and concepts using
the whole semantic annotation generated by the baseline model.
In contrast, the basic models described in this work can capture
dependencies only between words, or word features, and con-
cepts at a limited distance: trigrams for the SFST model, bigram
for CRF. The latter can reach in any case high accuracy since it
can use many features of the input sequence and learns directly
global posterior probabilities.

D. Structural Features for Reranking

The kernels described in [14]–[20] provide a powerful tech-
nology to capture structured features from data, but the latter
should be adequately represented. We propose the following
two sequential structures, and , to represent SLU hy-
potheses in the sequence kernel (SK) defined in [18]:

--- ---
--- ---

where the B/I tags characterize the Begin and Inside (or continu-
ation) of multiword concepts, as described also earlier. For both
SK1 and SK2, the order of words and concepts is meaningful
since each word is preceded by its corresponding concepts, so
a generic sequence captures a dependence be-
tween and while the sequence does not.
Also note that SK1 is more precise than SK2 since it links the
B/I tags together with the concept, but at the same time, it is
more sparse since it produces a larger number of labels.

The above representation is powerful since can capture all
possible dependencies but it is also rather flat. Therefore, to
better exploit the power of kernels, we build tree-like structures
directly from semantic annotation. Note that the latter is made
upon sentence chunks, which implicitly define syntactic struc-
tures as long as the annotation is consistent in the corpus. This
way we do not need to use syntactic parse trees and augment
them with domain specific information, e.g., semantic tags. In
more detail, we propose the structures for tree kernel processing
shown in Figs. 2(a) and (b) and 3, where the semantic tree in the
latter figure along with STK and PTK (see [18]) allows for gen-
erating a wide number of features (like Word categories, POS
tags, morpho-syntactic features), which are commonly used in
this kind of tasks.

Moreover, we point out that: a) we only use Word Categories
as features in the semantic trees. Such categories can be do-
main independent like “Months”, “Dates”, “Number”, etc., or
a POS-tag subset (used to generalize target word prefixes in in-
flexive languages) such as articles, prepositions, possessive and
demonstrative adjectives. b) The features in common between
two trees must appear in the same child-position, hence they are
sorted based on feature indexes, e.g., F0 for words and F1 for
word categories.

Note that the proposed semantic structures shaped as trees
only encode the information pertinent to the task, i.e., the
concepts annotated in a given sentence, their segmentation in
chunks, the surface form of each concepts and some features
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needed to improve generalization. In contrast, structures built
on top of syntactic parse trees would be very large and may
contain information, often not needed. Thus a fine pruning of
them would be needed in order to make them effective.

E. Hypothesis Selection Criteria via Inconsistency Metrics

An interesting strategy to improve reranking performance is
a pre-selection of the best set of hypotheses to be reranked. In
previous work [11]–[13], [29], [31], [32], [36], no study in this
direction has been carried out, i.e., the -best hypotheses gen-
erated by the baseline model were used for reranking.

In this work, we propose a semantic inconsistency metric
(SIM) based on the attribute-value extraction (AVE) step of the
SLU process that allows for selecting better hypotheses used af-
terwards in the reranking phase.

The attribute-value extraction module is based on rules that
map words (or word sequences) into the corresponding value.
For this purpose, the conceptual information annotated by the
baseline model is also used.

The rules are defined to extract values from well formed
phrases annotated with correct concepts. Thus, when the cor-
responding words are annotated with a wrong concept by the
baseline model, the extracted value will probably result wrong.
We use this property to compute a semantic inconsistency value
for the hypotheses, which allows us to select better hypotheses,
i.e., with higher probability to be correct. We show our SIM
using the same example already used before, where hypotheses
are produced starting from the sentence “I have a problem
with my screen.” From it, three possible hypotheses may be
generated by the baseline model, where we suppose to have
already removed the concept associated with the chunk
“I have”:

1) .
2) .
3)

.
Two of these annotations show typical errors of an SLU

model:
i) wrong concepts annotation: in the first hypothesis the

phrase “a problem” is erroneously annotated as ;
ii) wrong concept segmentation: in the third hypothesis, the

phrase “with my screen” is split in two concepts.
If we apply the AVE module to these hypotheses the result is:

1) ;
2) ;
3)

.
We note that has an empty value since it was in-

correctly annotated and, therefore, it is not supported by words
from which the AVE module can extract a correct value. In this
case, the output of AVE can only be empty. Similarly, for the
third hypothesis, the AVE module cannot extract a correct value
from the phrase “with the” since it does not contain any key-
word for a concept.

For each hypothesis, our SIM counts the number of possibly
wrong values, i.e., empty values. In the example above, we have
1, 0, and 1 for the three hypotheses, respectively. Accordingly,
the most accurate hypothesis under SIM is the second, which is
also the correct one in this case.

We exploit SIM by generating a huge number of hypotheses
with the baseline model and selecting only the top -best with
respect to the SIM score. These hypotheses are then used in the
discriminative reranking step. Such strategy gives the advantage
of choosing hypotheses from a large set, where it is probable
to find a more correct annotation. In contrast, all the previous
reranking approaches directly used the raw -best list provided
by baseline model. Moreover, in order to limit computational
cost, the size of the -best list is kept relatively small (few tens
in the best case).

F. Rerank Selection (RRS)

A reranking model can generally improve the baseline model
used as hypotheses generator. The intuition behind this claim is
that a reranker can infer the statistical distribution of the baseline
model mistakes. Moreover, for this purpose, it can use the se-
mantic annotation and its consistency over the whole input sen-
tence, i.e., it can use features capturing statistical dependencies
spanning the whole hypothesis. On the other hand, a reranker is
a statistical classifier, which is subject to errors with some prob-
ability. This means that for some input sentences, the top ranked
hypothesis can be less accurate than the original best one pro-
vided by the baseline model.

We can exploit the above consideration to further improve the
reranking framework; we can build meta-classifiers that, using
meta-features, choose between the outcome of the reranker and
the baseline model. One simple and efficient way to design such
meta-classifier is the use of the classification scores of the two
competing systems above and select the most reliable one: we
call this approach ReRank Selection (RRS). In more detail, it
requires the estimation, with respect to error rate minimization,
of two confidence thresholds applied to the scores of the base-
line and the reranking model. Given such optimal thresholds,
we choose the final best SLU hypothesis with the following de-
cision function:

���������	��
�

if and

otherwise

where and are the best hypotheses
derived by the reranker and the baseline model (SFST or CRF)
with their associated score and , respectively.

and are the two thresholds trained for the decision
function.

It should be noted that: i) we use two thresholds in our models
since the two system scores cannot be directly compared: the
SVM outcome is a functional margin whereas CRF is a proba-
bility. Combining these two scores would require a scaling pa-
rameter for one of them in order to give the correct weight. This
in turn would require optimization of such scaling parameter.
ii) The two thresholds provide more robustness since they set a
specific reliability limit for each classifier. iii) This meta-model,
although simple, is effective in exploiting errors made by the
baseline and the reranker, since it uses both scores for predic-
tion, while the reranking model can only exploit the baseline
model score.
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IV. EXPERIMENTS

The aim of the experiments is to show that our DRMs can
effectively exploit rich dependency features for improving
state-of-the-art in SLU (at least with respect to our referring
corpora). For this purpose, we first carried out experiments
to study the impact of different kernels and structures on the
reranking accuracy of baseline models. Second, we compare
the reranking algorithms against state-of-the-art models, i.e.,
FST, SVMs, and CRF. We use benchmarks that aim at repre-
senting tasks of different complexity and language variability,
i.e., the ATIS [21], MEDIA [22] and LUNA [10] corpora.
Third, to have real scenario results, we also compare models
on automatic transcriptions generated by automatic speech
recognition systems (ASR).

Finally, we present the results of our DRM computational
architecture, shown in Fig. 1, which exploits the inconsistency
metrics for hypothesis pre-selection and the reranking model
selection strategy (to activate or deactivate DRMs).

A. Experimental Setup

All the SCLMs that we apply in the experiments either for the
FST model baseline or to produce the input for the reranking
model, are trained with the SRILM toolkit [37] using an inter-
polated model for probability estimation with the Kneser–Ney
discount [38]. We then converted the model in an FST again
with SRILM toolkit. One of the drawback of such model is that
its accuracy is affected by the presence of out-of-vocabulary
words (OOV). We have solved this problem by mapping words
into word categories, which are usually not OOV. For ATIS and
MEDIA corpora, word categories were provided together with
the corpus, while for the Italian LUNA corpus categories have
been designed together with the ontology used for annotating
the corpus (more details are given in [23]). Thus, in all cases
word categories are part of the application knowledge base. For
example, city names can be grouped in the category CITY: if a
city name, e.g., Bordeaux, does not appear in the training set, we
can back-off to CITY category, which accounts for other cities,
e.g., Paris, appearing in the training set. Since the FST model
first maps words into categories, Bordeaux is mapped into the
category CITY. This simple solution gives the possibility to cor-
rectly tag also OOV words. The OOV problem is still present but
affect much less the model performance.

The SVM baseline for concept classification was trained
using YamCHA5 [39]. The CRF models were trained with the
CRF++ tool.6 The parameter settings are described in [40],
which is the state-of-the-art on the corpora we consider. Indeed
in [40], CRF are compared with other four models (SFST,
SVMs, Machine Translation, Positional-Based Log-linear
model) by showing that they are by far the best models on
the MEDIA corpus. We used the same features for both SVM
and CRF baseline, i.e., word and morpho-syntactic features in
a window of with respect to the current token, plus
bigrams of concept tags (see YamCHA and CRF++ web site
and [40] for more details).

5available at http://chasen.org/~taku/software/yamcha
6available at http://crfpp.sourceforge.net/(from the same author of YamCHA)

The reranking models based on structured kernels and SVMs
were trained using the SVM-Light-TK toolkit.7 The number of
hypotheses used for reranking was always set to 10. The larger is
the number of hypotheses the larger will be the oracle accuracy,
but we have to tradeoff the latter with efficiency. The SIM al-
gorithm (Section III-E) selects 10 out of 1000 hypotheses from
the baseline model (the large number of rejected hypotheses did
not contribute to the oracle accuracy of the system).

The thresholds for the decision function of the RRS strategy
(see Section III-F) are trained on the development set of the
corresponding corpus.

Our approach for training the reranking models is called
“Split Training” (ST) in [12], and it has been used in many
works about reranking, e.g., in [31]. We split the training
set in two parts: a first FST model is trained on part 1 and
generates the 10-best hypotheses parsing part 2, thus providing
the first chunk of reranker’s data. Then the same procedure is
applied inverting part 1 with part 2 to provide the second data
chunk. Finally, the reranker is trained on the merged data. For
classification, the 10-best hypotheses of the entire test set are
generated using the FST model trained on all training data.

For the ATIS experiments, we did not apply any parameter
optimization, i.e., we used the parameters from previous work.
For the experiments on MEDIA and the Italian corpora, we op-
timized all the parameters on the development sets.

The results are expressed in terms of concept error rate
(CER). This is a standard measure based on the Levensthein
alignment of sentences and it is computed as the ratio between
inserted, deleted, and confused concepts and the number of
concepts in the reference sentence. When not specified, CER
is computed only on attribute names (Attr.), otherwise CER is
computed for both attribute names and values (Attr-Value).

Since we also tested the SLU models on automatic transcrip-
tions, we report that the latter were produced by a speech rec-
ognizer with a WER of 10.4%, 27.0%, and 31.4% on the ATIS,
LUNA, and MEDIA test sets, respectively. In all cases, the used
language model is an interpolated model with Kneser–Ney dis-
count [38], which gives a better performance in most cases.

1) Training and Classification Time Issues: All models de-
scribed in this work have been trained on machines with two
CPUs Xeon dual-core 2.3 GHz and 4 or 8 GB of RAM. We re-
port training time on MEDIA since it is the largest corpus: using
CRF++, we had to use features cutoff (with a threshold of 2)
in order to be able to fit data into the central memory. Even in
this setting the training time was roughly 5 days, to which the
training time for the reranker has to be added. This was between
7 and 9 days, depending on the structure used for the kernels.

Higher memory availability allows for using more features
with CRF (without decreasing training time) and increasing the
kernel cache size for the reranker, which significantly increases
the speed of kernel computations. For our latest experiments, we
used machines with 64 GB of RAM (and same computational
power as before), which resulted in a training time for reranking
models of roughly 2.5 days.

Concerning classification time, all baseline models, including
CRF, are fast enough to be used in real time applications. For
example, the CRF model for MEDIA can generate hypotheses
for a sentence in roughly 0.6 seconds. In contrast the reranking

7available at htttp://disi.unitn.it/moschitti
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TABLE IV
CER OF RERANKERS USING STK, PTK AND SK ON LUNA (MANUAL

TRANSCRIPTIONS) APPLIED TO THE FSTS’ OUTPUT. FSTS AND SVMS

ACHIEVE A CER OF 23.2% AND 21.0%, RESPECTIVELY

model evaluates all the hypotheses in roughly 11 seconds per
sentence. This time is rather high for real time applications, nev-
ertheless SVM classification can be easily parallelized.

B. Comparing Kernels and Semantic Structures

Table IV shows the accuracy of rerankers using different ker-
nels applied to different semantic structures. Such results refer
to our previous work in [11], for which we used an older version
of the LUNA corpus (a subset of the corpus used in this work).
We exploit this outcome to motivate our choice of the best com-
bination of kernels and structures to be used for the comparison
against the state-of-the-art. The dash symbol appears where the
kernel cannot be applied to the corresponding structure.

It is worth noting that: first, from Table IV, rerankers sig-
nificantly improve the baseline results, i.e., 23.2% (CER for
FST) and 21.0% (CER for SVMs). For example, SVM reranker
using SK, in the best case, improves FST concept classifier of

points.
Second, the structures designed for trees yield rather different

results depending on the used kernel. We can see in Table IV that
the best result using STK is obtained with the simplest structure,
i.e., FLAT, while with PTK the best result is achieved with the
most complex structure, i.e., FEATURES. This is due to the fact
that STK does not split the children of each node, as explained
in [15], and so structures like MULTILEVEL and FEATURES
result too rigid and prevent STK to be effective. In contrast, the
structure FLAT is rigid as well, but since it is very simple and
has only one level of nodes it can capture the most meaningful
features.

Third, we do not report all the results using different kernels
and structures for the MEDIA corpus. However, we point out
that since MEDIA is a noticeable larger corpus and its pro-
cessing is also more complex (42 concepts in LUNA, 99 in
MEDIA), the more complex structures are also more effective
to capture word-concept dependencies.

Finally, the string kernel applied to the structure SK1 seems
to be the most effective with a CER of 16.2% on the first and
smaller version of LUNA. However, since SK is computa-
tionally demanding, we cannot apply it to large corpora, e.g.,
MEDIA or even ATIS. Moreover, in Section V an experiment
on the new version of the LUNA corpus will show that SK is
not more accurate than PTK. For these reasons, we adopted the
PTK with the richest tree structure FEATURES in all the fol-
lowing reranking experiments: this is the best trade-off between
accuracy and computational complexity. We used such settings
in all the following experiments on the MEDIA and the Italian
LUNA corpora and for both FST and CRF reranking.

Regarding the use of kernels an interesting finding can be
derived: kernels producing a high number of features, e.g., SK or

TABLE V
RESULTS OF SLU EXPERIMENTS ON THE ATIS CORPUS USING MANUAL

����� � AND AUTOMATIC TRANSCRIPTIONS ����� � WITH

A WORD ERROR RATE (WER) OF THE ASR OF 10.4%

TABLE VI
TOP-MOST OCCURRING CONCEPTS IN THE ATIS CORPUS

PTK, in general produce higher accuracy than kernels less rich
in terms of features, e.g., STK. In particular STK is improved
by 2.3 percent points (Table IV).

C. Cross-Corpus Comparisons Using Basic Rerankers

In these experiments, we used the combination of PTK with
the structure FEATURES to design our reranker as it provides
the best compromise between accuracy and efficiency, ac-
cording to the previous section. We compare it across different
corpora, i.e., ATIS, MEDIA, and LUNA, respectively.

Table V reports the results on ATIS, obtained with the same
setting of the three baseline models (FST, SVM, and CRF).
Since FST results the best model, we only compare with the
reranker built on top of the FST model.

ATIS is the simplest task and this is reflected in high accu-
racy for all models, even using automatic transcriptions coming
from an ASR system. Nevertheless it is worth discussing some
interesting outcomes. The errors made on the ATIS test set are
caused by an imbalanced amount of instances of concepts. In-
deed, Table VI shows that the concepts DepartureCity, Ar-
rivalCity and DepartureDate.day_name are by far the most
frequent (57.7% of the total counts). This means, for instance,
that the models are strongly biased to annotate a city as De-
parture or Arrival city, regardless what the context is. Note that
the reranking model, (PTK), even in this situation,
can improve individual systems. The improvement is only 0.5%
points on manual transcriptions, with respect to the baseline FST
model, since the FST model error rate is very small.

Note that on ATIS there is no value extraction phase since
values basically correspond to surfaces realizing each concept.
Thus, the values for this task are obtained by simple and deter-
ministic processing of surface forms (the ATIS corpus used for
this task is the same used in [24] and [25]). For this reason, we
have judged not worthwhile applying the improved reranking
models (described in Section V) to ATIS.

Tables VII and VIII show results of the SLU experiments
on the MEDIA and LUNA test sets using manual and auto-
matic transcriptions of spoken sentences, respectively. In these
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TABLE VII
RESULTS OF SLU EXPERIMENTS ON THE MEDIA AND THE ITALIAN

LUNA TEST SETS ON MANUAL TRANSCRIPTIONS. SK INDICATES

THE USE OF SK INSTEAD OF THE USUAL PTK

TABLE VIII
RESULTS OF SLU EXPERIMENTS ON THE MEDIA AND THE ITALIAN

LUNA TEST SETS ON AUTOMATIC TRANSCRIPTIONS (ASR WER
IS 31.4% FOR MEDIA AND 27.0% FOR LUNA)

tables we compare all baseline models (FST, SVM, and CRF)
and the reranking models based on FST and CRF hypotheses
( and ).

As we can see from these tables, the most accurate baseline
model is CRF. This is not surprising since we replicate the CRF
models that showed the best performance on some SLU tasks as
described also in [40]. It is worth noting that the two reranking
models proposed in this work improve their respective baseline
models. For instance, improves the FST baseline of
2.4% and 3.7% on MEDIA and LUNA corpora, respectively,
on attribute-values extraction from manual transcriptions (text
input from now on). For automatic transcriptions (speech input
from now on) the improvement is of 3.7% for both corpora.

In contrast, although still improves the CRF base-
line, the improvement is much smaller, i.e., 0.1% on MEDIA
but still meaningful on LUNA, i.e., 1.6% for text input and at-
tribute-values extraction. This is due to the higher accuracy of
CRF on MEDIA, which leaves much less improvement margin.
This intuition is confirmed by the results of model
on speech input, where, since the baseline CER is rather higher,
the improvement is significant. Still considering the same tasks
as above, i.e., MEDIA and LUNA corpora and attribute-values
extraction, the gain in CER is 1.0% and 1.6% respectively.

Finally, the last row of the Table VII reports the CER of
reranking using SK, which is higher than the one produced by
PTK. This confirms that the choice of the latter is the most
appropriate. Regarding the very high result obtained by SK in
Table IV, we found out that it is due to the particular character-
istics of the first version of the LUNA corpus (e.g., rather small,
more noisy and less number of concepts) used in such experi-
ments.

D. Cross-Corpus Comparisons Using Enhanced Rerankers

In these experiments, we applied two enhancements of
DRMs: the SIM and RRS strategy. Table IX shows comparative
results on text input between FST, SVM, and CRF against

TABLE IX
RESULTS OF SLU EXPERIMENTS ON MEDIA AND ITALIAN LUNA TEST SETS

ON MANUAL TRANSCRIPTIONS USING RE-RANK SELECTION

TABLE X
RESULTS OF SLU EXPERIMENTS ON MEDIA AND ITALIAN LUNA TEST SETS

ON AUTOMATIC TRANSCRIPTIONS USING RE-RANK SELECTION

TABLE XI
RESULTS ON LUNA CORPUS USING BOTH MANUAL TRANSCRIPTIONS (TEXT

INPUT) AND AUTOMATIC TRANSCRIPTIONS (SPEECH INPUT)

TABLE XII
RESULTS ON MEDIA CORPUS USING BOTH MANUAL TRANSCRIPTIONS (TEXT

INPUT) AND AUTOMATIC TRANSCRIPTIONS (SPEECH INPUT)

RRS (described in Section III-F). We note that RRS improves
accuracy of both FST and CRF. Although, in some cases
the gain is small for CRF in the
worst case, i.e., on MEDIA, attribute extraction and text input,
there is a constant improvement in all tasks (with a maximum
gain of wrt to FST on LUNA for
attribute-values extraction).

More interesting results can be observed on speech input,
shown in Table X, where the minimal improvement over CRF
is and on
MEDIA (attribute and attribute value extraction, respectively)
and the maximum improvement over FST is

and on LUNA.
Finally, Tables XI and XII report a final comparison of all

our reranking models, also including the hypothesis selection
strategy (SIM), on LUNA and MEDIA corpora, respectively.

We note that the best DRMs, which use RRS and SIM, i.e.,
or , significantly improve

the other rerankers. For example, improves
the model of.4% in the worst case (MEDIA text
input) and 1.7% in the best case (LUNA speech input). Similar
improvement is achieved by the model on

(0.2% in the worst case, 0.5% in the best case).
These results suggest that our simple hypothesis selection
constantly improves DRM. Indeed, it allows for selecting
hypotheses from a larger set than a simple reranking model,
where just 10–20 hypotheses are considered (e.g., see [31]).

The overall enhancement on CRF, which is the best model, is:
2.3%, 2.4%, and 2.7% and 2.8% on LUNA, text input (Attr. and
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TABLE XIII
IMPACT OF SIM ON 10-BEST HYPOTHESES FROM CRF (MANUAL

TRANSCRIPTION AND NO RERANKING)

TABLE XIV
ORACLE CER ON THE ENGLISH ATIS, FRENCH MEDIA AND LUNA

ITALIAN CORPORA (MANUAL TRANSCRIPTION)

Attr. values) and speech input (Attr. and Attr. values), respec-
tively. The improvement on MEDIA is 0.6%, 1.1% and 1.6%,
1.9%, text and speech input, respectively.

It should be noted that:
• These results are important since they improve on the

state-of-the-art (reached by CRF). For example, for at-
tribute recognition on manual transcribed data, the best
CER reported on MEDIA is 11.5 [40], which is com-
parable with our baseline, i.e., 11.7. In the paper above,
better results than the latter are also reported but they refer
to different improved implementations of the CRF training
algorithm thus not related to feature representation.

• Reranking may be limited by the quality of the hypotheses
generated by the local model. To show that this is not an
important limitation, in Table XIV, we report the Oracle
Error Rates of our rerankers on all three corpora used for
our experiments in this work.

• These show that there is a large gap with respect to the cur-
rent best results and there is a large margin of improvement
using our DRMs.

1) Insight on SIM: The improvement of SIM on our DRMs
makes its investigation worthwhile, especially with respect to
its impact on the selection of hypotheses before the use of the
reranker. This can be evaluated by testing the accuracy of the
baseline model after applying SIM alone. The CER of SIM ap-
plied to the CRF -best list on manual transcrip-
tions is reported in the first row of Table XIII, for both LUNA
and MEDIA corpora. We note that SIM slightly improves CRF,
i.e., 0.5% and 0.7% on LUNA and MEDIA for attribute-value
extraction, respectively (compared with Table VIII).

It is also interesting to test how the oracle accuracy of the hy-
potheses changes after SIM (Oracle and ). The oracle
CER is computed by measuring the edit distance between each
hypothesis and the manual annotation and taking the one with
the least number of mistakes. The improvement of roughly 2.0%
(Table XIII, second and third rows) on both LUNA and MEDIA
demonstrates the general validity of SIM.

E. Statistical Significance of the Results

Some of the results derived in this paper show slight improve-
ment of one model over the other, which prevents to derive sig-
nificance of some outcome. For this reason, we evaluated signif-

TABLE XV
SIGNIFICANCE TESTS ON THE MOST MEANINGFUL MODELS DESCRIBED IN

THIS WORK (THE LOWER THE VALUES THE MORE SIGNIFICANT)

icance tests of all our results on manual transcriptions, for both
LUNA and MEDIA corpora. We do not report the same anal-
ysis for automatic transcriptions, although the higher difference
typically achieved between models for them should guarantee a
significance of our results.

For the statistical significance tests, we used the software
by Sebastian Pado (available at http://www.nlpado.de/sebas-
tian/sigf.shtml). This carries out the computationally-intensive
randomization test described in [41], which is particularly
suitable for measures such as Precision, Recall or F1; we have
adapted it for the Concept Error Rate of our models. It tests the
following null hypothesis: given two models with performances

and (in our case is the concept error rate), the test
evaluates how likely is to observe a difference in the results at
least as large as . Since the assumption is that models
are equal, if the probability is lower than a certain confidence,
we can state that the difference is statistically significant (with
respect to such confidence).

We report the significance test for a subset of our models in
Table XV. Given two models and , versus is as-
sociated with a score of statistical significance, i.e., the p-score
indicating statistical significance. We provide the significance
test for the most important comparisons as the full set of com-
parisons would require a combinatorial number of models.

The results show that most of the CER difference between
models are statistically significant. The only important excep-
tion is versus on the LUNA corpus.
However, this is not completely unexpected as their outcomes
are rather similar and LUNA results are also affected by the
small size of the data. Additionally, low statistically significant
scores are observed for , i.e., the application of SIM
without applying reranking. In summary, the confidence test as-
sesses the validity of our DRMs.

V. DISCUSSION AND CONCLUSION

In this section, we first summarize the ideas and techniques
reported in this paper, then we assess them by discussing the re-
lated work and finally we give an outline of the empirical results
achieved by our models.

A. Qualitative Analysis

An important characteristic of our tree-shaped structures used
by PTK is the ability to capture long distance dependencies.
This is confirmed by our comparative analysis between the out-
come of the baseline models and our DRMs, performed on the
outcome on MEDIA. In more detail, MEDIA contains different
concepts providing similar information, which can be only cor-
rectly classified by carefully considering their context. For ex-
ample, temps-date (time-date) and temps-jour-mois (i.e., time-
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day-month) provide similar information about time expressions.
The first refers to time expressions used for a hotel reservation
whereas the other indicates a general expression of time. The
higher frequency of standard time concept (temps-jour-mois)
biases the prior of the SLU model. Thus, intuitively, when the
context cannot be identified by the baseline model, the concept
temps-jour-mois will be selected. In contrast, DRMs provide
much more context through long-distance dependencies (e.g.,
with other concepts expressed in the sentence like booking). It
is interesting to show that CRF mistook this concept 13 times,
while after reranking the same concept was mistaken only 7
times.

Other similar concepts falling into the same rationale (and
so mistaken for the same reason) are: i) localisation-lieure-
latif-nomme (localization-relative-place-name) and localisa-
tion-lieurelatif-general (localization-general-relative-place):
for which the number of errors are 11 and 5 for baseline
and the reranking models, respectively; ii) sejour-nbnuit
(journey-number-of-nights) and temps-unite (time-unit), mis-
taken 11 and 6 times, respectively, and localisation-rue
(localization-street) and localisation-lieurelatif-general, mis-
taken 10 and 6 times, respectively.

This simple qualitative analysis shows that our reranking
models are really effective and can exploit complex information
that baseline models, based on local information, cannot in
general use.

B. Overall Contribution

In this paper, we have described several approaches to SLU,
with particular emphasis on discriminative reranking, which ex-
ploits SLU hypotheses from baseline models, e.g., SFST and
CRF. The main characteristics of our methods are: first, we ap-
proached SLU as a semantic parsing reranking, which is dif-
ferent from syntactic parsing reranking. Thus, we designed and
studied different kernels on structures that are not syntactic. In-
deed, we use semantic structures, which aim at representing lex-
ical semantics and the relationships between semantic compo-
nents (i.e., concepts).

Second, we automatically construct our structures on noisy
data, which, in contrast with typical dependency or constituency
syntactic structures, are designed to be robust to noise.

Third, we designed and tested new kernels for semantic tree
processing, e.g., the kernels resulting from the application of
PTK to our new designed conceptual tree structures (which re-
sult in different kernels from those in [31]). These, as shown by
our experiments, are much more effective than other kernels.
We also experimented with string kernels to provide another
non-hierarchical semantic model, whose low efficiency moti-
vated the structuring of concept semantics in trees rather than in
sequences. In other words, our hierarchical semantic definition
is a step towards the design of compositional semantics in noisy
data.

Finally, the kind of features encoded by our kernels are
n-grams of any size also containing gaps, which allow for
including all possible long distance dependencies in the model,
e.g., the relation between two departure cities. Such features,
implicitly generated by our kernels, describe global semantics
of the sentences annotated by baseline SLU models, therefore

enabling global inference. The advantage of using kernels is
that we do not need to manually analyze the data and intuitively
choose the features that we believe may be effective.

C. Related Work

Among learning algorithms, CRF are one of the most useful
method to take into account many features and their dependen-
cies. However, in standard CRF or other non-kernel based ap-
proaches it is difficult to include interesting long-distance de-
pendency features (or just effective n-grams) since either we
have to manually define them (and this is a difficult task) or we
have to include all possible n-grams. The latter choice makes
learning impractical (too many features). Therefore, most im-
plementations of CRF [40], [42], [43] use features in a lim-
ited window around the current word to be labeled (to limit the
overall amount of memory and processing time).

Additionally, the CRF computational complexity when using
features built on top of labels (concepts in our case) exponen-
tially depends on the number of labels used to design such fea-
tures. This limits the use of dependencies between features and
labels (in most implementations at most bigram features are
used) so that only approximated models are available, e.g., the
skip-chain CRF [44].

One solution to solve the above limitations is the use of fea-
ture selection. Given the huge number of features involved in
current sequence labeling tasks, wrapper approaches [45] are
not viable (see for example [36]), thus only filter or embedded
methods were studied, e.g., [46], [47]. Some interesting ap-
proaches to dependency feature extraction were proposed, e.g.,
in [3]–[5] and [6]. Finally, feature selection was also imple-
mented within CRF using regularization [48], [49], or Lapla-
cian prior [43], [50]. These methods allow for effective feature
selection from a huge space, making learning with CRF feasible
even with billions of features. Unfortunately, including higher
order label features, such as concept dependencies, is still prob-
lematic. To our knowledge the only remarkable work in this di-
rection is described in [51].

Other relevant work related to our article concerns with
reranking. In [31], tree kernels for reranking of syntactic parse
trees were applied whereas in [52] subtrees were efficiently
used in an explicit structure space. Hidden-variable models
were studied in [53], where a significant improvement was
reached by exploiting several manually designed features. This
is not always possible for new tasks/domains, like ours. Our
approach, as we previously pointed out, is completely different
(with respect to tree type and kernels). From a conceptual point
of view, the work on [54], [55] is more similar to ours as it
models the extraction of semantics as reranking problem also
using string kernels. However, for such purpose the manual
annotation of minimal representation semantic trees (which
are expensive to produce) is needed. Moreover, the studied
application domain, coaching instructions in robotic soccer and
a natural language database interface, is very limited compared
to ours.

A more similar task has been studied in [56] for boundary de-
tection in conversational speech. The significant improvement
over the baseline model shows that reranking is an interesting
approach for SLU. In our paper, for the first time, we provide
indications on how designing DRMs by exploiting the potential
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of kernel methods. This has been carried out by also capitalizing
our experience in other researches, e.g., [17], [19] and [57].

Previous work shows that reranking is an effective framework
to improve and encode global knowledge about the target task.
One of its drawback is the upperbound on system accuracy set
by the baseline model hypotheses. In other words, if the base
model does not provide optimal hypotheses in the top posi-
tions, no reranker can achieve large improvement. Thus, it is
important to analyze such upperbound given by the error rate
computed when always the best hypothesis is selected (by an
oracle). We report the oracle error rates in Table XIV for the
Italian LUNA and for the French MEDIA corpora. Its entries
clearly show that the upperbounds defined by the base-model
hypotheses are largely above the state-of-the-art, i.e., there is
still a wide margin for improvement.

Note that the state-of-the-art SLU on MEDIA combines sev-
eral hypotheses with a ROVER approach [58] at token level. Al-
though this should provide more general and flexible solutions,
the oracle accuracy of our reranking at sentence level is far much
higher. Thus, before the use of a reranker at sentence level be-
comes a limitation, we have to prove that the other methods can
at least remotely approach such oracle accuracy. The high value
of the latter is partially due to the application of our simple but
effective search in the hypothesis space, i.e., the SIM. Finally,
in such perspective, other approaches considering the whole hy-
pothesis set have been studied, e.g., [59].

Regarding our previous work, we designed some prelimi-
nary reranking models based on kernel methods in [11]–[13]
although the used hypotheses were only generated by FSTs. In
this paper, we have firstly proposed i) CRF-based rerankers, ii)
a much more extensive experimentation on also new corpora,
i.e., ATIS and an extended version of LUNA, and iii) the new
valuable approaches, i.e., RRS and SIM.

D. Final Remarks

In this section, we summarize the outcome of our comparative
analysis, carried out on three different tasks: ATIS, MEDIA and
LUNA:

• Our best DRMs consistently and significantly improve the
respective baseline model (SFST or CRF) on all corpora
where our CRF baseline model used the same setting and
obtained the same accuracy of the state-of-the-art (reported
in previous work).

• Experiments with automatic speech transcriptions revealed
the robustness of the reranking models to transcription er-
rors.

• The reranking model, using kernels for natural language
processing (NLP) like String and Tree Kernels can take into
account arbitrarily long distance dependencies of words
and concepts.

• Kernel methods show that combinations of feature vec-
tors, sequence kernels and other structural kernels, e.g.,
on shallow or deep syntactic parse trees, appear to be a
promising research line.

Our DRMs reach high accuracy thanks to two interesting
strategies we propose for improving SLU reranking:

• The hypothesis selection criteria, i.e., SIM. This allows for
selecting hypotheses from a large set, i.e., those that are
most likely to be correct.

• The ReRank Selection strategy, which is based on the
scores of the baseline and reranking models. This allows
for recovering from mistakes of the reranking models, i.e.,
in case the top ranked hypothesis after reranking is less
correct than the original best hypothesis.

In the future this research could be extended by focusing on
advanced shallow semantic approaches such as predicate argu-
ment structures, e.g., [19]. Additionally, term similarity kernels,
will be likely improve reranking models, especially when com-
bined with syntactic tree kernels, e.g., [60]. Another interesting
future work would be the use of more than one model to generate
hypotheses for learning the reranker so that several approaches
can be combined similarly to ROVER methods (like in [40]).

Finally, given the latest results on reverse-kernel engineering
[35], it would be possible to extract meaningful features from
our reranking models and use them in other state-of-the-art ap-
proaches, e.g., CRF. At the same time, methods to use kernels
in CRF have been developing [61]. The reverse engineering will
also allow for obtaining faster approaches. Alternative methods
to design fast training may follow the research line in [33]. On
the dialog perspective, our improved SLU system could be com-
bined with [62] for the design of an effective dialog manager.
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