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Abstract 
We are interested in understanding speech overlaps and their 
function in human conversations. Previous studies on speech 
overlaps have relied on supervised methods, small corpora and 
controlled conversations. The characterization of overlaps 
based on timing, semantic and discourse function requires an 
analysis over a very large feature space. In this study, we 
discover and characterize speech overlaps using unsupervised 
techniques. Overlapping segments of human-human spoken 
conversations were extracted and transcribed using a large 
vocabulary Automatic Speech Recognizer (ASR). Each 
overlap instance is automatically projected onto a high-
dimensional space of acoustic and lexical features. Then, we 
used unsupervised clustering to discover distinct and well-
separated clusters that may correspond to different discourse 
functions (e.g., competitive, non-competitive overlap). We 
have evaluated recognition and clustering algorithms over a 
large set of real human-human spoken conversations. The 
automatic system separates two classes of speech overlaps. 
The clusters have been comparatively evaluated in terms of 
feature distributions and their contribution to the automatic 
classification of the clusters. 
Index Terms: Overlapping Speech, Human Conversation, 
Discourse, Language understanding 

1. Introduction 
Over the last forty years, the study of human-human 
conversations has attracted interest from researchers in the 
fields of sociology, computational linguistics and speech 
science. In the early seventies, Sacks et al. [1] studied human 
conversations and found that the transition from one speaker to 
another should occur with minimum overlap or gap, the two 
turn-taking signals, in between the turns. Recent studies [2] 
suggested that the timing of turn-taking using overlaps and 
silence is less precise. It also argued that, overlap is actually a 
frequent phenomenon and is a lot more than just a turn-taking 
signal.   

Overlaps represent a speaker’s behavior and intention in a 
regular conversation. Some overlaps indicate support for the 
current speaker to continue her or his turn while others are 
intended to break the flow of the conversation or to compete 
for turns [3]. The former class of overlaps is referred to as 
non-competitive and the latter, competitive. 

Most previous studies have been conducted on controlled 
meeting corpora [4]. However, in this study, we have focused 
on spoken conversations collected from a call center. Thus, the 
focus of this study is to analyze the natural distinctive 
statistical patterns that describe overlaps using unsupervised 
techniques. We have analyzed acoustic and lexical features 
that discriminate individual clusters and compared them with 
the characteristics of features mentioned in previous literature 
on distinguishing the overlaps. 

In contrast with that of previous studies, the contribution 
of this study differs in a number of ways: 

• Investigation of speech overlaps using unsupervised 
clustering. 

• Extraction of very a large set of lexical features and 
acoustic features. 

• Analysis of the speech overlaps’ discriminative 
characteristics over acoustic and lexical features. 

This paper is organized as follows. An overview of 
previous studies of overlaps is given in Section 2, followed by 
a description of data preparation procedures in Section 3. In 
Section 4, we discuss the experimental methodology used in 
this study. Finally, we present an analysis of our findings in 
Section 5 and provide conclusions in Section 6.   

2. Related Work 
Speech overlaps have been categorized in terms of speakers’ 
(non) competitiveness. In previous work different verbal and 
non-verbal predictors have been proposed to indicate 
willingness to compete. According to [5], position of the 
overlap onset is an important feature along with some 
temporal features related to the position of overlaps. In [6], it 
is mentioned that speech rate, cut-offs and repetition are also 
important features used by speakers in competitive overlaps. 
In [3], authors observed that precise location does not describe 
a competitive overlap but the phonetic design plays the role. 
Later studies in [8, 9] supported this hypothesis. In [9], authors 
also stated that competitive overlaps are usually high in pitch 
and amplitude to grab the attention from the current speaker. 
Classification of competitive and non-competitive overlaps 
was studied in [10] using decision tree and they found that 
duration is the most distinguishing feature. The findings in 
[4,7] suggest that F0 is the most common feature and is being 
higher in competitive overlaps.  

3. Data 
In this study, we have analyzed a corpus collected from a call 
center, which contains inbound Italian phone conversations 
between agents and customers. Each conversation was 
recorded over two channels at a sample rate of 8 kHz, 16bit 
speech samples and has an average duration of 395.90 
seconds. 

As mentioned earlier, our data preparation process was 
completely automatic and we selected 515 conversations based 
on maximum duration of the overlapped segments. The 
overlapped segments are detected using start and end time of 
each speaker’s turn and for each word unit within that turn. To 
get each speaker’s turns we passed the conversation to an 
automatic turn segmenter [11] followed by a large vocabulary 
Italian ASR to get automatic transcription from the 
corresponding turns. Then, we detected overlapping turns, 
where each turn has an alignment between the automated word 
level transcriptions and the speech recording. Using the 



overlapping turns, we also extracted words that are overlapped 
within the turns. Then, we extracted the speech signal from 
our overlapping speech instances using the start time of the 
first word in the overlap to the end time of the last word. 
Therefore, the overlap segment has two components per 
conversation. Following this approach, we have extracted 
25132 instances of overlaps from 515 conversations, where 
total overlap duration is 3 hours and 38 minutes and total 
speaking time is 41 hours and 52 minutes. 

The ASR system was designed using a portion of the data 
set with around 100 hours of conversations, and a lexicon of 
size ~18K. The training data of the ASR was completely 
independent from the data set that was used in the study. 

To train the ASR, we extracted the MFCC features, and 
the model was trained using Kaldi [12]. We obtained the best 
results by using the speaker adaptive training (SAT) that 
splices 3 frames on each side of the current frame. Linear 
Discriminant analysis (LDA) and Maximum Likelihood 
Linear Transform (MLLT) feature-space transformations were 
then used to reduce the feature space then followed by MMI 
training. The Word Error Rate (WER) for our ASR system is 
31.78% on the test set split using a tri-gram language model. 
The perplexity of the language model is 87.69. 

4. Methodology 
The workflow of clustering and feature analysis is shown in 
Figure 1. The overlap segment’s components are shown for 
each channel. Acoustic and lexical features were extracted 
from both channels and then combined separately. In addition, 
we investigated the relevance of the combination such as 
acoustic and lexical features. We designed three feature set 
combinations: acoustic type only, lexical type only and 
acoustic together with lexical types.  For each feature set, we 
performed cluster evaluation and analyzed the features based 
on the clustered output using a feature ranking approach. In 
addition, we tried to understand whether we are losing any 
information by reducing the feature dimension. 

 
Figure 1: The overlap classification system. 

4.1. Features 

4.1.1. Acoustic features 

We extracted a large number of acoustic features, motivated 
by their success in paralinguistic task [13,14]. The process is 
to extract a large number of low-level descriptors (LLD) and 
then project onto statistical functionals, which we have done 
by using openSMILE [15].  

These low-level features were extracted with 
approximately 100 frames per second, with 25 milliseconds 

per frame. The 39 low-level features include frame energy, 
loudness, mel-frequency cepstral coefficients (MFCC1-12), 
voice quality (probability of voicing computed from 
autocorrelation), fundamental frequency (F0), exponentially 
smoothed F0-envelope, jitter-local (pitch period length 
deviations), differential of jitter, shimmer-local (amplitude 
deviations between pitch periods), logarithmic harmonics-to-
noise ratio (HNR) computed from auto-correlation, voice 
quality (probability of voicing), spectral features with different 
bands (0-250Hz, 0-650Hz, 250-650Hz, 1-4kHz), spectral roll-
off points (25%,50%,70%,90%), centroid, flux, max-position 
and min-position, zero crossing rate of time signal and formant 
frequencies (F0-F3). Delta and acceleration coefficients of 
these features have also been extracted.  

These low-level acoustic features were then projected onto 
24 statistical functionals. The functionals includes range; 
absolute position of max, min; linear and quadratic regression 
coefficients and their corresponding approximation errors; 
moments - centroid, variance, standard deviation, skewness, 
kurtosis; zero crossing rate; peaks - number of peaks, mean 
peak distance, mean peak; geometric mean of non-zero values, 
number of non-zeros.  

As mentioned earlier, overlap segment’s components 
appear in two channels; therefore we extracted same features 
from both channels. The size of the feature vector in single 
channel is  (39 + ∆39 + ∆∆39) LLD × 24 functionals = 2808. 
After combining we ended up with 5616 features. 

4.1.2. Lexical features 

Lexical features were extracted from automatic transcription 
using the ASR explained in Section 3. The lexical features 
transformed into bag-of-words (vector space model) for 
clustering. Bag-of-words is a numeric representation of text 
that has been introduced in text categorization [16]. The idea 
of this approach is to represent the words into numeric 
features. For this study, we extracted bigram features and 
select top 2K frequent features to reduce the load of the large 
dictionary. We have not used higher order n-gram due to the 
limitation of the utterance length in the overlapped segment. 
The frequency in the feature vector was then transformed into 
tf-idf - logarithmic term frequency (tf) times inverse document 
frequency (idf). 

4.1.3. Feature Combination 

Feature combination has been widely used in other speech-
processing task and its relative contribution varies greatly 
depending on the data and experiments. For this study, we also 
wanted to understand the contribution of feature combination. 
As shown in Figure 1, after extracting acoustic and lexical 
features we combined the feature vectors into a single vector 
and then used that for clustering.  

4.1.4. Dimensionality Reduction 

Since the complexity of any pattern recognition algorithm 
depends on the number of features, therefore we tried to 
reduce the feature space to reduce the complexity and number 
of free parameters. Typical approach for feature reduction is to 
map higher dimensional feature space into lower dimensional 
space, while keeping as much information as possible. In our 
study, we have used principle component analysis (PCA), 
which is the fundamental and most widely used feature 
reduction. After transforming the feature space using PCA, the 



usual approach is to take the leading p components that 
explain the data with 95% variance [17]. However, as a 
baseline study we took leading p components with 99% 
variance. Hence, we reduced 63% acoustic, 11% lexical and 
59% acoustic+lexical features. The reason of obtaining 
minimal reduction with lexical features is the weak correlation 
with feature dimensions and sparseness.  

4.2. Clustering 

To find the well-separated clusters of speech overlaps in our 
dataset we used K-means [18] where data points are classified 
as belongings to one of K-group. For reproducibility and 
transferability we used weka’s implementation [19]. Members 
of the clusters are determined by comparing the data point 
with each groups centroid and assigning to the nearest one. 
The reason to choose K-means is that it is highly 
recommended for large dataset [20, 21] and is one of the 
simplest methods. However, one of main downside of K-
means is choosing the value of K in prior. Therefore we used 
cascaded K-means, which uses Calinski-Harabasz [22] 
criterion to determine the best value of K that represents the 
dataset.  

In its process, for each k value, it calculates the between-
group dispersion, BGSS; within-cluster sum of squares, 
WGSS and Calinski-Harabasz (CH) value or index, using 
Equation [1-3] 
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      (3) 

where K is the number of clusters, N is number of 
observations, G{k} is the barycenter of cluster Ck, G is the 
barycenter of the whole dataset, nk is the number of elements 
in the Ck. Ik is the set of the indices of the observations 
belonging to Ck Mi is the ith observation of element in Ck. 

Figure 2 shows the values of CH corresponding to the 
number of cluster K and the results of our experiments are 
shown in Table 1.  

The optimal number of K using acoustic and 
acoustic+lexical feature sets is 2, as can be seen in Figure 2 
and their clustering difference is very minimal. Using lexical 
feature, we obtained the optimal number for k is 4, and the CH 
value for the cluster is significantly less compare to CH values 
with acoustic features. The minimal separability of lexical 
features could be due to the sparseness and the recognition 
error of ASR.  

We applied PCA feature reduction method on acoustic and 
acoustic+lexical feature sets and with reduced dimensions we 
obtained 2 clusters in each set. We then calculated the cluster 
agreement of different feature sets using kappa (κ) statistics 
[23]. We found that the agreement between original and 
reduced dimensions is quite reasonable. The agreements for 
acoustic and acoustic+lexical feature sets are 92% and 91% 
respectively. This indicates that feature reduction helps in 
terms of computational cost without any loss of information. 

To check the validity of clusters using cascaded k-means 
we used another well-known clustering algorithm, which is 
Spectral Clustering [24, 25]. Then, compared the clusters 
generated by two clustering algorithms for acoustic and 
acoustic+lexical feature sets using κ measure. The agreement 
between the two algorithms on acoustic and acoustic+lexical 

feature sets are 90% and 87% respectively. For the sake of 
simplicity, we do not show the details cluster results of 
Spectral Clustering algorithm in this paper.  

 
Figure 2: Calinski-Harabasz (CH) value for cluster 

decision 

Feature Set K CH W B 

Acoustic 2 3681.12 42.31 155749.22 
Lexical 4 232.66 1.38 320.04 
Acoustic +Lexical 2 3568.28 43.71 155985.56 

Acoustic + lexical with PCA 2 2754.82 21.28 58631.95 

Table 1: Cluster evaluation using different feature sets, 
K - number of cluster, CH - Calinski-Harabasz value, W 
– weighted within-cluster sum of squares, B – between 
group dispersion 

5. Analysis and Discussions 
We analyzed different features based on the cluster decision of 
acoustic features, where cluster 0 (C0) and cluster 1 (C1) 
contains 37% and 63% of overlapping instances respectively. 
The members of clusters were analyzed using duration 
distribution of speech overlaps and top-ranked acoustic 
features. Based on this cluster decision, we extracted and 
analyzed lexical features. In doing so, we tried to correlate our 
observation with previous studies to see whether our clusters 
represented competitive or non-competitive overlaps. 

5.1. Duration Distribution 

Figure 3 shows the distribution of overlap durations for C0 
and C1. It can be seen that C1 contains instances of overlaps 
with short durations whereas C0 has instances with 
comparatively long durations. The authors of [10] and [26] 
state that non-competitive overlaps tend to be shorter and 
resolved soon after the second speaker has recognized the 
overlap, whereas competitive overlaps are persistent because 
speakers keep on speaking despite the occurrence of overlap. 
Therefore, it can be inferred that competitive overlaps have 
longer durations than non-competitive overlaps. 

Considering duration as a key distinguishing feature, we 
observed that there is a clear distinction between C0 and C1. 
We also observed that the median duration distribution of C1 
is very close to the minimum distribution of C0. The 
minimum, median, third quartile and maximum durations, in 
milliseconds, of the clusters are C0 - {300, 740, 950, 3590} 
and C1 - {40, 330, 430, 850}, in that respect. 



5.2. Acoustic and Lexical Feature Analysis 

For the analysis of acoustic features we used Relief [27] 
feature selection technique to rank the features. The top ranked 
low-level acoustic features include logarithmic harmonic to 
noise ratio (logHNR) with its delta and acceleration 
coefficients, F0 envelope, shimmer-local, jitter-local, spectral 
features, etc. Whereas the statistical functionals include range, 
standard deviation, mean of peak, linear regression with error 
coefficients, centroid, etc. Figure 4 shows some of the top 
ranked low-level features projected on statistical functionals as 
described in Table 2. From the figure, we can see how two 
clusters differ in their distributions; the mean values for C1 are 
always lower compare to C0. 

 
Figure 3: Overlap duration distribution of the two clusters 

 
Figure 4: Selected acoustic features (F1-12) and their z-
score distribution in C0 and C1. Box-plots, representing 
the mean, max, upper and lower inner fences of top ranked 
features. Outliers have been removed for readability.  

The significant difference in the means of the voice quality 
features (F1-F4, F6, F7) indicates that these features play an 
important role in detailing the patterns in each cluster. 
logHNR is a feature, which is widely used to analyze disorders 
such as hoarseness and depression. However, we understand 
that this feature has not been used before in the analysis of 
overlaps. Other commonly used features for categorizing 
overlaps are F0, loudness and energy. By observing the values 
of F0 in Figure 4, it can be inferred that the mean value of C0 
is higher than that of C1. This inference is extended to apply to 
the values of F11 as well. This, coupled with observations 
from previous research, provides the grounds for the 
conclusion that our C0 exhibits patterns similar to competitive 
overlaps. 

By studying the most frequent lexical features, it can be 
noted that filler and affirmative words are present in both 

clusters but that C1 has higher frequencies than C0. For 
example, the token “sì/yes” is present in C1 with a frequency 
of 2506, three times as much as that of C0. It can also be noted 
that, in comparison with C0, C1 has a homogenous lexicon, 
giving C0 its long tail as shown in Figure 5. 

Feat. Description 
F1 logarithmic harmonic to noise (logHNR) ratio with delta 

coefficient projected to statistical range 
F2 logHNR projected to statistical range 
F3 logHNR with delta coefficient projected to statistical 

mean of peak 
F4 logHNR projected to statistical standard deviation 
F5 logHNR with linear error computed as the difference of 

the linear approximation and the actual contour 
F6 F0 envelope projected to statistical mean of peak 
F7 local shimmer with centroid 
F8 local jitter with centroid 
F9 F0 envelope projected to geometric mean of non-zero 

values 
F10 first formant with number of non-zero values 
F11 loudness with number of non-zero values 
F12 log energy with delta coefficient projected to non-zero 

values 

Table 2: Acoustic features and their description 

 
Figure 5: Zipf’s plot with bigrams for overlapped clusters. 
Frequency is plotted as a function of frequency rank. 

6. Conclusion 
In this study, we designed an automatic system that separates 
the speech overlaps into two classes using unsupervised 
approach. Our data preparation was done with an automated 
process using a cascade of speech segmenter and ASR system. 
For clustering, we extracted a large number of acoustic 
features from overlapped segments and lexical features from 
automatic transcription. Our findings suggest that acoustic 
features play an important role for discovering well-separated 
clusters compared to lexical features. The voice quality 
features especially logHNR, jitter and shimmer are the most 
discriminating features in clustering the overlaps. From our 
analysis we found that instances of C0 have a higher 
probability to be competitive overlap whereas C1 to be non-
competitive. Our observation on lexical features, obtained 
from the clustering decision of acoustic features, suggests that 
the frequency of filler and affirmative words are higher in C1 
compare to C0. More investigation is needed to understand the 
role of lexical features.  
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