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Abstract
In this paper we have studied the problem of detecting the spo-
ken turn boundaries in human-human spoken conversations.
The automation of this task is essential to enable the analy-
sis, recognition and understanding of the speech transcriptions
and dialog structures (e.g. turn taking, dialog act segmentation
etc.). The problem formulation is different from previous work
on metadata extraction in that we work on the time domain for
the detection of boundaries. This approach has the advantage of
giving fine grain measures of speech events and does not rely on
the automatic speech transcriptions. We have explored applica-
bility of different algorithms for this task and have found that
a hidden Markov model combining results of the modulation
spectrum analysis and Kullback-Leibler divergence of adjacent
signal portions produces the best results. The performance of
the algorithms has been evaluated on the Switchboard conver-
sational speech corpus.

Index Terms: spoken turn boundary , spoken dialogs, mod-
ulation spectrum, Bayesian information criterion, Kullback-
Leibler divergence

1. Introduction
Understanding human conversations is a complex process in-
volving speaker turn segmentation, turn transcription, attribu-
tion of a dialog act, detection of key concepts, etc. Automated
completion of these tasks is crucial to build machines for sup-
porting humans in complex analysis of large amount of dia-
log data. In this paper we focus on the automatic detection
of turn boundaries in the time domain. Such task is relevant
for downstream processes such as automatic speech recogni-
tion, turn taking modeling, spoken utterance human annotation,
etc. The problem formulation is different from previous work
on metadata extraction [1] in that we work on the time domain
for the detection of boundaries. This approach has the advan-
tage of giving fine grain measures of speech events and does
not rely on the speech transcriptions generated by the Auto-
matic Speech Recognizer (ASR). Our approach is also different
from the traditional voice-activity detection (VAD). The classi-
cal VAD problem [2] was formulated in the context of speech
coding [3, 4] with the purpose to release communication band-
width when there is no useful signal to be transmitted. The def-
inition of the “useful signal” in the classical VAD task is very
broad: any signal with the spectral power distribution being far
from the uniform is deemed to be worth of reporting as a useful
signal.

The typical time duration of spoken turns is in the range
of 0.5 – 30 sec. It is acceptable and even beneficial to include
leading and trailing silence frames so that downstream ASR can
have proper initialization and shutdown. Moreover, it is more
important to keep the rate of falsely taken decisions low rather
than attempt to achieve the best ratio of correctly classified anal-
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Figure 1: Example of a dialog turn (Ti) segmentation. Turns
”T1” - ”all right”; ”T2” - ”uh”; ”T3” - ”we’ve got a lot of
them [laughter] too many of them”; ”T4” - ”yeah well my hus-
band’s real good at using them”; ”T5” - ”okay”; ”T6” - ”oh
yes [laughter] and i believe we all do and and it’s just too easy
to use”; ”T7” - ”[laughter]”.

ysis frames, because each wrongly taken decision would lead to
an ASR almost certainly making erroneous recognition of the
underlying spoken turn. Since the acquisition is typically done
through a close-talking microphone, speech in telephone con-
versations rarely gets contaminated with a moderate stationary
noise, however the non-stationary signal portions are to be ex-
pected. Ideally the speech turn segmenter should not pass to
a recognizer anything but speech intervals. Fig. 1 presents an
excerpt from a turn segmentation of a spoken dialog. In this pa-
per we investigate the performance of three algorithms for turn
boundary detection, the modulation spectrum analysis (MSA),
Kullback-Leibler (KL) divergence for adjacent signal portions
and Bayesian Information Criterion (BIC) for boundary detec-
tion. We propose an HMM-based combination of the event de-
tection algorithms and show that their combination is outper-
forms each of them. The evaluation of the turn segmentation
algorithms is carried out over the Switchboard corpus and as-
sessed for a varying decision tolerance time window.

2. Algorithm description
Our speech segmentation algorithm is constructed as a combi-
nation of feature extraction techniques which feed a final deci-
sion generation process. It takes input from the various stages
of a conventional MFCC feature computation procedure (i.e.
signal power and 12 cepstral coefficients of the Mel-spectrum
and their respective first and second derivatives at a rate of 100
frames per second) to save the computational power.

2.1. Modulation Spectrum Analyzer (MSA)

The modulation spectrum analysis (MSA) algorithm [5, 6] uses
a stream of short-time Fourier transform (STFT) frames as its
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Figure 2: MSA algorithm schematic diagram. Epass/Etotal - a
ratio of modulation power in the range of interest to the total.

input (see Fig. 2). In the experiments reported in this paper
the size of the STFT observation window was chosen to be 64
frames. Each of the spectral bins is considered a signal in time,
for which a Fourier transform can be computed. This spectrum
reflects how fast the energy of the respective frequency band is
getting alternated through time.

The Fourier transform in the log-power domain is even
more revealing. Let us consider a “source-channel” model of
speech production, when the constant source signal (either a
wide band noise or a harmonic complex) is convolved with
a variable speech production channel. In the log-spectral do-
main the time-domain convolution becomes an addition. Thus,
by taking a Fourier transform along the individual STFT log-
spectral trajectories it is possible to isolate and characterize the
dynamical properties of speech production apparatus. This rep-
resentation of the signal is known as a modulation spectrum [6].
The final signal representation is three-dimensional, having fre-
quency, modulation frequency and time as the axes.

Speech signals typically have a peak in modulation spec-
trum in the range between 1 and 10 Hz. This fact can be ex-
plained roughly through the “effective” rate of phoneme pro-
duction being in the range of 1 to 10 times per second at max-
imum. We should note, however, that the rate of alternation
of plosives is much higher than that of vowels and fricatives.
In order to abstract away from the distribution across different
spectral channels we sum modulation power spectral distribu-
tions to obtain one cumulative modulation power spectrum at
any time instance. Then with the help of a simple filter in the
modulation spectrum domain we estimate the power in 1 to 10
Hz modulation range. The final output of the modulation spec-
trum analyzer is a ratio of power in the modulation spectrum,
contained in the range of interest to the total modulation power
of the signal being analyzed Epass/Etotal.

The output of the MSA is approximately invariant to the in-
coming signal scale (see the first two signals on Fig.3). The out-
put does not vary much with the input signal being enhanced 20
dB. Thus, the dynamic range of the MSA algorithm is reason-
ably large compared with the dynamic range of the pulse-coded
modulation (PCM) signal representation.

Additive noise attenuates the distinctive modulation spec-
tral signature of the signal and eventually makes it undetectable
at approximately -15 dB SNR (see the last three signals on
Fig.3). Although the moderate level of Gaussian additive noise
is not a realistic scenario in telephone conversations, its effect
is similar to the effect of quantization noise in PCM representa-
tion. We have observed in our experiments that signals, whose
amplitude is comparable with quantization step, get lower MSA
scores because of the quantization noise. In the situation of
mutual across-channel interference MSA does not mark faint
echoes from the other channel as “speech”. However, for situa-
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Figure 3: MSA of speech examples. Four experiments: MSA of
the original signal; MSA of the signal enhanced by 20dB; MSA
of the signal enhanced by 20dB + Gaussian noise (SNR 5dB);
MSA of the original signal + Gaussian noise (SNR -15dB).

tions with higher level of across-channel interference a special
source separation technique must be employed.

The typical value of MSA output for ideal clean speech is
approx. 0.4-0.5, while typical stationary noise gets 0.2. It is
not a power in the particular sub-band, but rather the effective
rate of signal alternation through frequency subbands which al-
lows us to discriminate between speech/non-speech events. Our
experiments have revealed that such nonstationary signals, like
tractor noise, helicopter noise, windshield wipers do not lead
to MSA output being in the “speech” range. However, certain
music genres, bird songs are still confusable with speech for the
current version of MSA algorithm.

2.2. Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) algorithm is aimed at
the detection of significant changes in the sample statistics. The
BIC-feature is being extracted in two phases. First, the obser-
vation interval is split around a hypothesized statistics chang-
ing point T0, thus producing a buffer X for the signal values
immediately preceding a hypothesized boundary, a buffer Y for
the data, which immediately follows the hypothesized boundary
and the buffer Z which is a union of X and Y . In the performed
experiments the size of buffers X and Y was chosen to be 64
frames of the MFCC feature set.

A simple multivariate Gaussian is estimated from the data
in the buffers. The respective parameter sets are being denoted
by θx, θy and θz . The second stage includes estimation of the
probabilities to encounter particular observation with a given
initial assumption of the model. The final BIC distance is com-
puted with the formula (1) [7]. This formula reflects a compe-
tition between two hypotheses: one is that model θz is better to
describe the whole set of data (both buffers X and Y ), the other
is that a combination of different models θx (for buffer X) and
θy (for buffer Y ) is better:

DBIC =
PNx

i=1 log p(xi|θx)
p(xi|θz)

+
PNy

i=1 log
p(yi|θy)

p(yi|θz)
−

−
“
n + n(n+1)

2

”
λ log NZ

2
.

(1)

where NZ = NX + NY is a total number of observations
in the analysis window; n is the dimensionality of the feature
vector; λ is a data-dependent parameter and needs to be tuned
to achieve the best performance.

2.3. Kullback-Leibler Divergence (KLD)

The same set of buffers X , Y and Z can also be used in com-
puting Kullback-Leibler Divergence (KLD) as a measure of dis-
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Figure 4: Histogram of MSA readings.

tribution similarity. As in the case of BIC the data in the three
buffers is modelled as a single multivariate Gaussian distribu-
tion. The KLD from a true underlying Gaussian distribution D0

to a modelling Gaussian distribution D1 is defined as follows:

dKL(D0||D1) = 1
2
(log

“
det Σ1
det Σ0

”
+ tr

`
Σ−1

1 Σ0

´
+

+ (μ1 − μ0)
T Σ−1

1 (μ1 − μ0)− n),
(2)

where n is the feature vector dimensionality.

As KLD is not a symmetric distance (i.e. generally
dKL(A||B) �= dKL(B||A)) it must be decided which of the
buffers gives a statistical estimate of the “true” underlying dis-
tribution of data and which is to be used to compute a “model”
distribution in question. Our experiments revealed little differ-
ence between the possible ways to use different buffers in KLD
computation, but the sum DKL of distances dKL(NX ||NZ)
and dKL(NY ||NZ) has lead to slightly better results.

2.4. Decision Combination Algorithm

The decision of the algorithm is synthesized with a two-state
(“silence” and “speech”) ergodic HMM via the process of
Viterbi-decoding as a state sequence most probably correspond-
ing to the observed acoustic evidence.

Emission probability distributions in this HMM are mod-
elled by Gaussian fitting to the statistical evidence of MSA re-
sponses on conversational speech data. We have used a sepa-
rate set of 15 dialog sides from the Switchboard database [8].
The emission penalty PE is being computed from the emission
probability by taking a negative logarithm.

Fig. 4 presents a histogram of the MSA output. The distri-
bution is very close to a bi-modal sum of Gaussians. According
to the properties of the MSA algorithm, each of these Gaus-
sians corresponds to a particular state of the decision generating
HMM. Thus, essentially the emission model has emerged from
the unlabeled data in an unsupervised manner.

Transition penalties PT in the HMM are not constant but
rather governed by either the DBIC or DKL, which are linearly
scaled to have the same mean and equal dynamic ranges. This
allows to reduce the penalty associated with an HMM transi-
tion whenever the output of the BIC or KLD algorithm reports
a significant mismatch in the statistics of the future and past
buffers. Scaling parameters are being found as ones that maxi-
mize recognition performance on the set of training data.

To measure the relative impact of individual algorithms on
the generated decisions “information-less” substitutions were
employed. In the “MSA only” case there was no signal to gen-
erate a variable transition penalty, thus a constant value of P̃T

was used instead. In the cases of the BIC and KLD being exclu-
sively used, an emission penalty P̃E was linearly proportional
to a logarithm of the state duration. In these conditions both
HMM states have equal properties and there is no way to pre-
dict the type of transition. In this sense the task in which the

KLD and BIC are being evaluated is simpler than a task for the
MSA and combinations of the algorithms.

In order to facilitate an on-line processing of the audio data
with the spoken turn segmenter the procedure of continuous
backtracking has been implemented. At each frame the HMM
transition histories are being compared and an update of their
common history is reported.

3. Performance Evaluation
The algorithms are evaluated on the data taken from the Switch-
board corpus [8] (LDC97S62). The test set contained 100
dialogs recorded as duplex communication, which yields 200
speaker channels. Recordings from the database were taken at
random with no attention to the audio quality. This was done
to estimate an expected performance level of the algorithm in
realistic “loosely controlled” environments. The signal quality
annotation which was done after selection, has revealed that the
test set has the following major problems. There are recordings
with both channels containing speech from both speakers mixed
in different proportions. Recordings contain a large amount of
high intensity clicks. There are recordings with non-stationary
background interference, e.g. music, baby cries. The reference
manual segmentation for the experiment was taken from the lat-
est release1 of the Switchboard re-segmentation project [9].

Table 1 presents a comparative study of the algorithms and
their combinations. They are also compared to the performance
of the reference implementation of the VAD of the standard
G.729b vocoder [3]. The tolerance interval Δt is chosen to be
1 second, which appears to be appropriate for the spoken turn
segmentation task. The operating points of all systems in the
table (except G.729b VAD) were chosen in order to maximize
F1-score as measured on the training set.

Table 1: Performance of different predictors. “Δt” – tolerance
interval, “CR” – total number of correct recognitions, “FR” –
total number of false rejections, “FA” – total number of false
acceptances, “F1” – F1-measure

Detector Type Δt, sec CR FR FA F1

MSA + KLD 1.00 19134 7655 10904 0.6734
MSA + BIC 1.00 19580 7209 12252 0.6680

MSA alone 1.00 19665 7124 12816 0.6636
MSA alone 0.75 18954 7835 13751 0.6418
MSA alone 0.50 18004 8785 14785 0.6044
MSA alone 0.25 16324 10465 16471 0.5479
MSA alone 0.10 12898 13891 19898 0.4329

BIC alone 1.00 24785 2004 55991 0.4608
KLD alone 1.00 16989 9800 37839 0.4163
G.729b 1.00 26671 118 264903 0.1675

All of the reviewed algorithms perform vastly better in spo-
ken turn detection in comparison with the VAD of G.729b. Hav-
ing a very small false rejection rate, the latter produces many
false boundary detections. This fact comes as a result of the
vocoder VAD being designed for a different task. As mentioned
above, in voice coding the main purpose of the VAD is to iso-
late silence intervals during which, the communication band-
width can be spared. Being very sensitive to the energy of the
underlying signal, this VAD produces far too finely grained and
not very robust to noise sequence of the silence and speech seg-
ments. We have observed that the false acceptance rate for this
VAD does not vary much depending on the true segment label.
This observation suggests that a postprocessing technique is not

1http://www.isip.piconepress.com/projects/switchboard/
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Figure 5: Relative performance improvement wrt “MSA alone”
of the combined predictors (“MSA-KLD” and “MSA-BIC”)
with different tolerance intervals.
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Figure 6: Histogram of misalignment of the boundary predic-
tion compared to the true position of the boundary.

likely to help to recover spoken turn segmentation from the out-
put stream of this VAD.

Both KLD and BIC used alone perform worse then the
MSA. BIC appears to be a better predictor compared to KLD.
This result can be explained in terms of a mismatch between the
task and algorithm design principles.These algorithms are de-
signed to detect an arbitrary change in the input signal statistics,
this change should not necessarily be a transition between si-
lence and speech. Originally the proposed application for these
algorithms in speech science was in speaker diarization.

The analysis buffer duration used in these experiments is
too short to gather the sample statistics reliably. That is why
BIC and KLD algorithms produce “noisy” decisions with rela-
tively high false acceptance rates. We have seen that an appro-
priate change of parameters can still bring FA and FR rates to
a balance, but at the cost of a large increase of the FR rate and,
thus, reduction of the F1-measure.

The combination of MSA and BIC or KLD produce slightly
better results than MSA alone. Despite its lower computational
complexity the MSA-KLD hybrid performs better than MSA-
BIC. This observation is counterintuitive as the KLD alone is
the worst performer.

We have also assessed performance of the systems when
the tolerance Δt reduces down to hundred milliseconds. As
it can be seen from both Table 1 and Fig. 5 the degradation
does not dramatically accelerate even in the case of the tightest
tolerance window. The hybrids are progressively more precise
compared to the case of “MSA alone” with the tolerance win-
dow getting shorter. The KLD and BIC are algorithms in time
domain and can provide finer boundary positioning compared
to the frequency-domain MSA.

Fig. 6 depicts a histogram of misalignment of the bound-

ary prediction compared to the true position of the boundary.
The measurement is done for the best performing MSA-KLD
hybrid. The distribution is close to a Gaussian, but its variance
towards the positive values of the misalignment is smaller com-
pared to that towards the negative values. The peak of the dis-
tribution occurs around the misalignment value of −0.01 sec,
which is equal to the repetition rate of the observation frames
in time (either STFT or the final feature vectors). Thus we can
conclude that the bias of the predictor is close to its minimum.

4. Conclusions
A comparison of the different speech detection and segmenta-
tion methods has revealed that an HMM combination of MSA
and KLD performs at the best level in the task of detection of
spoken turns in natural telephone dialogs. The proposed method
works directly from the speech recording and unlike existing
methods of lexical segmentation does not rely on the existence
of a transcription. In this task it outperforms traditional VAD
algorithms as it aims at minimization of the false decision rate
rather then maximization of correctly labeled data ratio.

The algorithm is to be used to segment speech data during
live conversations for subsequent recognition of the complete
individual spoken turns. The systematic delay of the segmenta-
tion procedure, while depending on the complexity of the task
of speech detection in given conditions, has a lower bound of
around half a second. This is deemed to be acceptable for em-
ployment in realtime automated dialog analysis systems.
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