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Abstract

A new method for automatically acquiring Fragments for understanding ¯uent speech is proposed. The goal of this

method is to generate a collection of Fragments, each representing a set of syntactically and semantically similar

phrases. First, phrases observed frequently in the training set are selected as candidates. Each candidate phrase has

three associated probability distributions: of following contexts, of preceding contexts, and of associated semantic

actions. The similarity between candidate phrases is measured by applying the Kullback±Leibler distance to these three

probability distributions. Candidate phrases that are close in all three distances are clustered into a Fragment. Salient

sequences of these Fragments are then automatically acquired, and exploited by a spoken language understanding

module to classify calls in AT&T's ``How may I help you?'' task. These Fragments allow us to generalize unobserved

phrases. For instance, they detected 246 phrases in the test-set that were not present in the training-set. This result

shows that unseen phrases can be automatically discovered by our new method. Experimental results show that 2.8% of

the improvement in call-type classi®cation performance was achieved by introducing these Fragments. Ó 1999

Elsevier Science B.V. All rights reserved.

Zusammenfassung

Es wird ein neues Verfahren zur automatischen Erfassung von Fragmenten f�ur die intelligente Verarbeitung ge-

sprochener Sprache vorgeschlagen. Ziel dieses Verfahrens ist es, Sammlungen von Fragmenten zu erstellen, die aus

syntaktisch und semantisch �ahnlichen S�atzen bestehen. Zun�achst werden alle S�atze, die w�ahrend der �Ubungsphase

h�au®g aufgetreten sind, als ``Kandidaten'' ausgew�ahlt. Jedem dieser S�atze sind drei Wahrscheinlichkeitsverteilungen

zugeordnet: der des nachfolgenden Kontextes, des vorhergehenden Kontextes und der zugeh�origen semantischen

Aktionen. Die �Ahnlichkeiten zwischen den ausgew�ahlten S�atzen wird durch Anwendung der Kullback±Leibler-Ent-

fernung auf diese drei Wahrscheinlichkeitsverteilungen gemessen. Alle Redewendungen, die bei allen drei Verteilungen
�ahnliche Entfernungen aufweisen, werden zu einem Fragment zusammengefaût. Anschlieûend werden alle au��alligen

Sequenzen innerhalb dieser Fragmente automatisch erfaût und von einem gesprochene Sprache verstehenden Modul

ausgewertet, damit die Anrufe in der AT&T-Aufgabe ``Wie kann ich Ihnen weiterhelfen?'' klassi®ziert werden k�onnen.

Mit Hilfe dieser Fragmente lassen sich bisher unbeachtete S�atze verallgemeinern. In einer Testanordnung wurden
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beispielsweise 246 S�atze registriert, die in der �Ubung nicht enthalten waren. Dieses Ergebnis zeigt, daû unbemerkte

S�atze mit unserem neuen Verfahren automatisch entdeckt werden. Die Versuche ergaben, daû durch Einf�uhrung dieser

Fragmente die Klassi®zierung der Anruftypen um 2,8 Prozent verbessert werden konnte. Ó 1999 Elsevier Science B.V.

All rights reserved.

ReÂsumeÂ

Une nouvelle m�ethode d'acquisition automatique des Fragments pour la compr�ehension du langage courant est

d�esormais propos�ee. L'objectif de cette m�ethode est de g�en�erer une collection de Fragments, chacun repr�esentant un

ensemble de phrases similaires d'un point de vue syntaxique et s�emantique. En premier lieu, les phrases fr�equemment

rencontr�ees dans le kit de formation sont s�electionn�ees en qualit�e de phrases candidates. Chaque phrase candidate

pr�esente trois r�epartitions de probabilit�e associ�ees: contextes suivants, contextes pr�ec�edents et actions s�emantiques

associ�ees. La similitude entre les phrases candidates est mesur�ee en appliquant la distance Kullback±Leibler �a ces trois

r�epartitions de probabilit�e. Les phrases candidates proches des trois distances sont regroup�ees au sein d'un Fragment.

Les s�equences repr�esentatives de ces Fragments sont ensuite acquises automatiquement, et exploit�ees par un module de

compr�ehension du langage courant a®n de classer les apples dans la tâche AT&T d�enomm�ee ``How May I Help You?''

(``Comment puis-je vous aider?''). Ces fragments nous permettent de g�en�eraliser les phrases non observ�ees. Par exemple,

ils ont permis de d�etecter 246 phrases pr�esentes dans les kits de test et absentes des kits de formation. Ce r�esultat montre

que les phrases qui n'ont pas �et�e vues peuvent être d�ecouvertes automatiquement grâce �a notre nouvelle m�ethode. Des

r�esultats exp�erimentaux montrent une am�elioration de 2,8% des performances de classi®cation des types d'appels apr�es

la mise en place de ces Fragments. Ó 1999 Elsevier Science B.V. All rights reserved.

Keywords: Spoken language understanding; Phrase similarity; The Kullback±Leibler distance; Grammar fragments; Call-type

classi®cation

1. Introduction

Stochastic language models generated from
huge text corpora have been successfully applied to
several speech recognition-based tasks. Although
the stochastic language model achieves remarkable
performance in large vocabulary continuous
speech recognition, it is di�cult for conventional
stochastic language models to accurately recognize
spontaneous speech spoken by non-expert users.

We have developed a spoken dialog system for
call routing. In the task of call routing, services
that the user can access are categorized into 14
types and other as a complement (Gorin et al.,
1997). Each of the 14 services is assigned to a
di�erent call-type. The system determines which
call-type is required by accepting spontaneous
speech as input at the ®rst stage of the procedure.
Once the call-type has been determined, the in-
formation needed for completing each service is
requested using another dialog. This paper de-
scribes a new stochastic language model for
spontaneous speech understanding; it mainly fo-
cuses on call-type classi®cation from spontaneous

utterances. In our task, there is no need for the
dialog system to achieve high performance in
word-by-word decoding. The system should rather
extract continuous word sequences strongly linked
to the call-types.

Early versions of this method were applied to
several di�erent tasks of various complexity: call
routing, data retrieval, robotics blocks world
(Gorin, 1995). In general, contents of spontaneous
speech can be classi®ed into one of several cate-
gories such as the call-types, if the word sequences
in the spontaneous speech can be linked to one or
more categories by using a stochastic process.
Therefore this approach is widely applicable to not
only the application of call routing but also other
applications if a set of training transcriptions is
provided together with the classi®cation category
of each transcription.

The proposed dialog system for call routing and
the new stochastic language model used for un-
derstanding spontaneous speech are described be-
low. Fig. 1 outlines the dialog system for call
routing. The goal of this system is to understand
an input well enough to identify the service type
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desired by the caller in a telecommunications en-
vironment. Since in many situations the call-type
cannot be unambiguously determined from a sin-
gle input, dialog is often necessary. This can be due
to an ambiguous request or to the weakness of the
spoken language understanding algorithm. This
system accepts spontaneous speech spoken by
non-expert users as input in a telecommunications
environment. As shown in Fig. 1, the Speech
Recognizer recognizes the speech and generates a
word sequence by using a conventional stochastic
language model. The Call-type Classi®er accepts
the word sequence as input and determines the
call-type corresponding to the utterance by using
the interpretation knowledge, of what we call
``Salient Fragments'', that de®nes associations be-
tween a word sequence and call-types. It has been
shown that the dialog system can classify the call-
type adequately if the system can extract the
phrases strongly associated with particular call-
types. For instance, the word sequence ``my credit
card'' is strongly associated with the call-type
calling_card. The algorithm for call-type classi®-
cation is designed to exploit the salient association
between the phrases in the user's utterance and
call-types (Gorin et al., 1997).

Once the call-type has been agreed upon, a di-
alog is conducted to collect all information nec-
essary to provide the service. For instance, the
service called calling_card has the following pro-
cedures. First, a credit card number is entered into
the system. A telephone number that the user
wants to call is then entered, if the card number is
accepted. Speech recognition or some other tech-
nique can be applied to perform these procedures.
The call is ®nally connected to the user to complete
this service.

This paper mainly focuses on a new stochastic
language model used in the speech understanding
process for determining the call-type. The Call-
type Classi®er and the Salient Fragments in Fig. 1
perform this process. In conventional stochastic
language modeling, the probability of a word oc-
currence is generally calculated from its frequency
as obtained from training transcriptions. This ap-
proach is applicable to not only words but also
phrases. In fact, frequencies of some phrases are
higher than those of some words that are rarely
observed in the training set. It is therefore rea-
sonable that a phrase is regarded as a unit for
language modeling (Giachin, 1995; Masataki and
Sagisaka, 1996; Riccardi et al., 1997). The phrase-

Fig. 1. Dialog system with call routing.
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based N-gram makes it possible to estimate accu-
rately the transition probabilities between the
phrases observed frequently in the training set.
Other language models have been proposed based
on the word-class N-gram (Brown et al., 1992;
Bellegarda et al., 1996; Farhat et al., 1996; Ward
and Issar, 1996). In that approach, words having a
similar pattern of transition probabilities are gen-
erally clustered into the same word class. Since a
word sequence is represented as a sequence of
word classes, this approach makes it possible to
estimate the probability for a word transition not
observed in the training set.

Conventional clustering approaches, however,
focus on following words or phrases only to min-
imize the branching factor or the test set perplex-
ity. Since analogous phrases have a similar
distribution in not only the following word se-
quence but also in the preceding word sequence,
the similarity of word sequences can be clustered
more e�ectively by referring to both following and
preceding word sequences. Furthermore, an ut-
terance accepted as input of the call-router dialog
system can usually be classi®ed semantically into
one of 14 call-types. Some phrases performing an
analogous role in this task must have similar as-
sociation with the call-type. Thus word sequence
similarity can also be computed by using such as-
sociations between phrases and call-types (Wright
et al., 1997). In this paper, a new method for
gathering phrases into clusters, what we call
Fragments, is proposed. This method focuses not
only on following words but also on preceding
words and on the call-types associated with each
utterance in order to generate the Fragments that
consist of similar phrases. Distances between
phrases are calculated based on the distribution of
preceding and following words and the call-types.

This paper proceeds as follows. The collection
and speci®cation of training and test transcriptions
are described in Section 2. In Section 3, three types
of distance between phrase pairs are discussed. For
each phrase, the probability distributions for fol-
lowing and preceding contexts and for call-types
are obtained via back-o� smoothing of relative
frequencies in the training transcriptions. By using
these distributions, three distances between two
phrases are calculated by using the Kullback±

Leibler distance measure. Section 4 addresses the
clustering of similar phrases based on these three
types of distances. Phrases clustered into the same
Fragment form a part of the grammar used in the
spoken understanding module. In Section 5, ex-
perimental conditions and results are described
along with some of the examples generated in ex-
periments.

2. Training and test transcriptions

A database of 10 K spoken transcriptions be-
tween users and human agents was generated as
detailed in (Gorin et al., 1997). First, both chan-
nels of the dialog were recorded from the agents'
headset jacks onto a digital audio tape (DAT).
These recordings were then automatically seg-
mented, ®ltered, and down-sampled to generate a
stereo speech ®le for each transaction.

In this study, we focus on the ®rst user utterance
following the greeting prompt of ``How may I help
you?''. These utterances were end-pointed, tran-
scribed, and labeled as to the call-type and quality of
the speech and channel. In call-type labeling, one of
15 call-types was assigned to each transcription. In
some cases, two or more call-types were labeled to a
transcription. For instance, the two call-types di-
al_for_me and calling_card were assigned to the
transcription, ``Yeah can you dial a number for me I
wanna put this on my calling card it's two one. . .''.
The transcriptions were split into three subsets for
training (8 K), developing (1 K), and testing (1 K)
the acoustic and language models for recognition
and understanding. The training set had approxi-
mately 3.6 K words to de®ne the vocabulary.

3. Fragment distance

3.1. Phrase and Fragment

We now de®ne some of the terms used in this
paper to clarify their use in our study.

Phrase: An arbitrary continuous word sequence
in the training transcriptions is called a phrase. All
phrases can be obtained by decomposing the
transcriptions into n-tuple word sequences.
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Namely, each phrase is a substring of a sentence.
The number of words in a phrase is constrained to
three or less in this experiment.

Fragment: The phrases having higher frequency
than some threshold are selected as candidates.
The candidate phrases are regarded as units for
generating the Fragments. Each Fragment is ac-
quired via the clustering of candidate phrases
based on their similarity and is represented as a
conventional ®nite-state machine.

A Fragment grammar is generated by using the
Fragments. The Fragment grammar also de®nes
the association between phrase and call-type. Ex-
amples of the association with the call-type, the
distance calculation, and the phrase clustering al-
gorithm are shown using only phrases in Sec-
tions 3 and 4. We remark, however, that these
techniques can generally be applied in a straight-
forward manner to Fragments or sequences
thereof.

3.2. Generation of candidate phrases

Table 1 shows the numbers of phrases for
lengths up to three as observed in the training
transcriptions. In Fig. 2, the rank frequency dis-
tribution of each phrase consisting of one, two or
three words is illustrated. Fig. 2 demonstrates that
the most frequent phrase consisting of two words
is, as an example, observed approximately 2000
times in the training transcriptions. On the other
hand, the frequency of an individual word whose
ranking is lower than 100 is fewer than that of
some frequent phrases consisting of two or three
words.

Some phrases and their frequencies are shown
in Fig. 3. The frequency of each phrase was
counted independently of other phrases. For in-
stance, Fig. 3 shows that the phrase ``call'' was
observed more than 4000 times and this phrase
was preceded by the word ``collect'' in ``collect

call'' more than 1000 times in the training tran-
scriptions. Fig. 3 also illustrates that the frequency
of some phrases, such as ``like to'' and ``I'd like'', is
higher than that of some individual words. These
frequencies reveal that some phrases that appear in

Table 1

Number of phrases

Number of words Number of phrases

1 3566

2 22,233

3 48,457

Fig. 3. Phrase frequency.

Fig. 2. Phrase rank±frequency distributions.
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the training transcriptions can be de®ned as units
for language modeling. Transition probabilities for
phrases can be calculated in the same way as for
single words, by using the conventional approach
of N-gram language modeling.

3.3. Syntactic and semantic associations of a
Fragment

There are many de®nitions of the linguistic
terms syntax and semantics, so we now de®ne some
of the terms used in this paper for clari®cation. In
this discussion, syntactic association signi®es the
relationship between a Fragment and the phrases
following or preceding the Fragment. Several
kinds of following and preceding phrases for each
Fragment are generally observed in training tran-
scriptions. If the roles of Fragments are similar to
each other in spoken dialog, then the distribution
of these phrases will be similar for the Fragments.
Thus by syntactic association, we do not explicitly
focus on grammatical issues such as part-of-speech
and tense but rather on the distribution of phrases
surrounding a Fragment. On the other hand,
semantic association signi®es the relationship be-
tween a Fragment in spoken language and the call-
type corresponding to the speech. The distribution
of call-types for a Fragment must be comparable
to that for another Fragment, if the two Frag-
ments are to be clustered. The semantic association
is therefore the cross-channel association between
speech and call-type.

An example of the syntactic and semantic as-
sociations seen for a Fragment is illustrated in
Fig. 4. f denotes a Fragment, s and c de®ne a
preceding or following phrase and call-type, re-
spectively. In Fig. 4, f consists of only one phrase
``calling card''. Su�xes such as t and t + 1 denote
sequence order. Given a phrase, Fragment, call-
type or combination thereof as an argument, the
function C( ) counts the frequency of the argument
in the training transcriptions. For instance,
C�f tst�1� denotes the frequency of the combination
Fragment f followed by phrase s. BOS and EOS
denote Beginning-Of-Sentence and End-Of-Sen-
tence, respectively. Fig. 4 shows that the phrase
``calling card'' was observed 962 times in the
training transcriptions. The phrase ``on my'', for

instance, preceded that Fragment 181 times and
``number is'' followed it 26 times. In the syntactic
association, the sum of the preceding phrase fre-
quencies is equivalent to the frequency of the
Fragment. The sum of the following phrase fre-
quencies is also equivalent to C�f t�. Eq. (1) shows
the relationship among C�f t�, C�stÿ1f t� and
C�f tst�1�.
C�f t� �

X
8s

C�stÿ1f t� �
X
8s

C�f tst�1�: �1�

We note that the sum of the call-type frequen-
cies is not equivalent to the Fragment frequency in
some cases. The reason for this inequality is as
follows. Several call-types may be assigned to a
training transcription as described in Section 2.
When a training transcription has two or more
call-types and a phrase is extracted from such
transcription, the frequencies of all call-types as-
sociated with the phrase are incremented. For in-
stance, the phrase ``calling card'' is observed in the
transcription ``Yeah can you dial a number for me I
wanna put this on my calling card it's two one. . .'',
and this transcription has two call-types, di-
al_for_me and calling_card. In this case, the fre-
quencies for these two call-types are incremented.
By counting the preceding and following phrases,
two syntactic probability distributions for each
Fragment are obtained.

The call-type probability distribution for each
Fragment is also obtained by using call-type

Fig. 4. Syntactic and semantic associations of a Fragment.
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frequencies. This call-type probability distribution
represents the semantic feature vector for a Frag-
ment. In order to generate syntactic probability
distributions, a set of phrases that precede or fol-
low Fragments is generated ®rst. In the following
discussion, a phrase that follows or precedes a
Fragment is called its context. Although in our
experiments the context consists of single words,
our algorithm can be applied to longer contexts so
we describe the method in its general form. Con-
sequently, the context can contain words and non-
terminal symbols corresponding to Fragments.
The number of words and non-terminal symbols in
each context is equalized to compute the syntactic
probability distributions. A context-frequency list
S for all Fragments is then generated by storing all
phrases of length Nc together with their frequen-
cies. Using S, a unigram probability distribution is
generated. This unigram probability distribution is
utilized for back-o� smoothing the syntactic
probability distribution of each Fragment. A set of
call-type frequencies is also obtained from training
transcriptions and can be utilized for smoothing
the semantic probability distribution.

The most frequent contexts are shown in Ta-
ble 2. Since the contexts are the predecessor or
successor of a Fragment, they consist of not only
words but also the symbols BOS and EOS. In
other words, a phrase in a Fragment cannot con-
tain these symbols because it must have both
preceding and following contexts. Three proba-
bility distributions for each Fragment are obtained
by using preceding and following context fre-
quencies, and call-type frequency. The bigram

probability distributions focusing on following
and preceding contexts are de®ned in Eqs. (2) and
(3), respectively.

p�st�1
i jf t

j � �
C�f t

j st�1
i �

C�fj�

� C�f t
j wt�1

1 wt�2
2 � � �wt�Nc

Nc
�

C�fj� ; �2�

p�stÿ1
i jf t

j � �
C�stÿ1

i f t
j �

C�fj�

� C�wtÿNc

1 � � �wtÿ2
Ncÿ1wtÿ1

Nc
f t

j �
C�fi� : �3�

In both Eqs. (2) and (3), si denotes the ith
context stored in the context frequency list S, fj is
the jth Fragment in the Fragment grammar, wk

denotes the kth word in the context si, and
Nc �Nc P 1� is the number of items referred as the
context. Su�xes such as t, t + 1 and t ) 1 denote
order in the word, context, or Fragment sequence.
The function C( ) counts the frequency of a se-
quence in the training transcriptions as described
in Section 3.3.

The contexts st�1
i and stÿ1

i are equivalent to word
sequences wt�1

1 wt�2
2 � � �wt�Nc

Nc
and wtÿNc

1 � � �wtÿ2
Ncÿ1wtÿ1

Nc
,

respectively. The larger the parameter Nc is set, the
more variety in context can theoretically be ob-
served. In practice, however, these probability dis-
tributions become sparse when parameter Nc is
large. Therefore, the parameter Nc should vary as a
function of the size of the training corpus. These two
probability distributions represent syntactic feature
vectors of the Fragments. On the other hand,

Table 2

Most frequent contexts (context length� 1, 2, 3)

Rank 1 2 3

1 BOS 7844 BOS yes 3065 to make a 1253

2 EOS 7844 like to 1990 I'd like to 1146

3 to 7709 make a 1629 BOS yes I 991

4 I 6943 to make 1496 a collect call 894

5 a 5124 I'd like 1266 like to make 891

6 call 4685 collect call 1265 I'm trying to 748

7 and 3311 call to 1117 make a collect 621

8 one 3211 trying to 1073 my calling card 540

9 yes 3117 yes I 1008 to place a 493

10 number 2877 BOS yeah 981 I need to 480
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the probability distribution focusing on semantic
associations can be obtained from the call-type
frequencies. Eq. (4) shows the probability distri-
bution based on call-type frequencies. ci denotes one
of the call-types in this task and C(ci fj) is the fre-
quency of call-type ci associated with the phrase fj.

p�cijfj� � C�cifj�
C�fj� : �4�

As a result, three types of probability distribu-
tion are obtained for each Fragment. The distance
between two Fragments is calculated by compar-
ing each type of probability distribution. Namely,
three distances between two Fragments are mea-
sured by using following and preceding context
probability distributions and call-type probability
distribution.

3.4. Kullback±Leibler distance

The Kullback±Leibler distance is one of the
most popular distance measures for calculating the
similarity between two probability distributions.
Because of the logarithmic term in the Kullback±
Leibler distance, the probabilities in Eqs. (2)±(4)
must be positive. Therefore, back-o� smoothing is
applied in advance to each probability distribution
by using the unigram probability distribution. The
context frequency list S described in Section 3.3
and the set of call-type frequencies are utilized to
make the context and the call-type unigram
probability distributions, respectively. The back-
o� smoothing method used in this approach is
described in detail in Appendix A. Eq. (5) shows
the de®nition of the Kullback±Leibler distance
between Fragments f1 and f2; it exploits the fol-
lowing context probability distributions.

df�f1f2� �
X
8si2S

p̂�st�1
i jf t

1� log
p̂�st�1

i jf t
1�

p̂�st�1
i jf t

2�
: �5�

S is the context frequency list described in
Section 3.3 and si is one of the contexts stored in
the context frequency list. p̂�st�1

i jf t
1� and p̂�st�1

i jf t
2�

are the smoothed probability distributions for
Fragments f1 and f2, respectively. The distance
based on the preceding context probability distri-
butions can also be measured in the same manner.

Eq. (6) de®nes the distance based on preceding
context probability distributions.

dp�f1f2� �
X
8si2S

p̂�stÿ1
i jf t

1� log
p̂�stÿ1

i jf t
1�

p̂�stÿ1
i jf t

2�
; �6�

where p̂�stÿ1
i jf t

1� and p̂�stÿ1
i jf t

2� are smoothed pre-
decessor probability distributions for Fragments f1

and f2, respectively. Eq. (7) de®nes the distance
based on call-type probability distributions. In
Eq. (7), ci is one of the call-types belonging to call-
type set C. p̂�cijf1� and p̂�cijf2� are smoothed
probability distributions for call-type ci associated
with Fragments f1 and f2, respectively.

dc�f1f2� �
X
8ci2C

p̂�cijf1� log
p̂�cijf1�
p̂�cijf2� : �7�

In general, the Kullback±Leibler distance is an
asymmetric measure. Namely, the distance from f1

to f2 is not equal to that from f2 to f1. We therefore
symmetrize the Kullback±Leibler measure by de-
®ning each type of distance as the average of the
two distances measured from both Fragments.
Thus the Fragment distances shown in Eqs. (8)±
(10) are used in the Fragment clustering.

Df�f1f2� � df�f1f2� � df�f2f1�
2

; �8�

Dp�f1f2� � dp�f1f2� � dp�f2f1�
2

; �9�

Dc�f1f2� � dc�f1f2� � dc�f2f1�
2

: �10�

It is useful to plot histograms of these three
types of Fragment distance. In Fig. 5, two refer-
ence Fragments fa and fb are selected to illustrate
the di�erence in the histograms. In this example,
each Fragment contains only one phrase. One of
the phrases, fa, is ``charge it to'' and the other
phrase, fb, is ``area code''. Three distances between
one of the reference Fragments and an arbitrary
Fragment fi were measured to create the histo-
grams. For instance, the histogram focusing on the
preceding context, shown in Fig. 5(a), plots the
distributions of Dp(fa fi) and Dp(fb fi). The histo-
grams of Df (fa fi) and Df (fb fi), and those of
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Dc(fa fi) and Dc(fb fi) are illustrated in Fig. 5(b)
and (c), respectively. The two histograms shown in
Fig. 5(a) and (b) have similar distributions and
show a large peak approximately within the range
from 5.0 to 15.0. The peak for the phrase ``area

code'' shifts leftward compared to that for the
phrase ``charge it to'' in both histograms. In the
histogram based on call-type distributions, the
histogram for the phrase ``area code'' is skewed
compared to that for the phrase ``charge it to''.

Fig. 5. Fragment distance histograms. (a) Preceding context. (b) Succeeding context. (c) Call-type.
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4. Fragment clustering

4.1. Fragment clustering based on Fragment dis-
tances

The basic idea for Fragment clustering is that
Fragments having a comparatively small distance
from a reference Fragment are regarded as being
similar and are clustered into the same Fragment.
In this study, however, three distances based on
preceding contexts, on following contexts and on
call-types are obtained between Fragments.
Therefore, the Fragments for which all distances
are small are clustered together. At ®rst, all can-
didate phrases described in Section 3.1 are gener-
ated from the training transcriptions. Each
candidate phrase forms a Fragment as the initial
set of Fragments. Namely, each Fragment initially
consists of one candidate phrase. We will now
describe the remaining steps of the Fragment
clustering algorithm. The frequency of each
Fragment is obtained by summing candidate
phrase frequencies. The Fragment with the highest
frequency and consisting of one phrase f0 is se-
lected as the reference Fragment. All Fragments
are sorted in the order of Fragment distances
measured from f0. The Fragment distance lists
based on preceding contexts, on following con-
texts, and on call-types are sorted independently
which yields three sorted Fragment lists. In each
Fragment list, the subset of Fragments for clus-
tering are determined based on the maximum dif-
ference in distance between following Fragments
in that list. For instance, in the Fragment list based
on the distance on following contexts, the number
of candidate Fragments Nf (f0) is determined by

Nf�f0� � argmax
16 i6Nm

fDf�f0fi�1� ÿ Df�f0fi�g; �11�

where fi and fi�1 are rank ordered Fragments with
respect to the distance on the following context.
Df (f0 fi�1) and Df (f0 fi) are the distances from the
references Fragment f0 to Fragments fi�1 and fi,
respectively. The distance Df (f0 fi) monotonically
increases with i. Nm is the maximum number of
Fragments to be compared. The number of can-
didate Fragments based on the distance focusing
on preceding contexts Np(f0) and call-types Nc(f0)

can be also determined by using distances Dp(f0 fi)
and Dc(f0 fi). Following these determinations, the
maximum number of candidates using the three
types of distance is determined by

N�f0� � maxfNp�f0�;Nf�f0�;Nc�f0�g: �12�
All Fragments, whose rank order in each

Fragment list is less than N�f0�, are selected as the
candidate of similar Fragments. Fragments listed
within the ranking N�f0� among all three types of
candidate list are syntactically and semantically
similar to the reference Fragment f0. Such Frag-
ments are merged into the reference Fragment f0.
Eq. (13) shows the criterion of Fragment classi®-
cation based on Fragment distance orders.

Fig. 6. Flow chart of Fragment clustering.
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f 00 � ffijOp�fi�6N�f0� \ Of�fi�6N�f0�
\ Oc�fi�6N�f0�g; �13�

where f 00 denotes the new Fragment generated by
this merger. OP�fi�, Of�fi� and Oc�fi� are the
ranked orders focusing on preceding and following
contexts, and call-types, respectively. If there is a
Fragment similar to the reference Fragment, ref-
erence Fragment f0 is updated by clustering the
similar Fragments. The clustering algorithm is it-
erated over the updated Fragment set. When no
Fragment is merged into the reference Fragment f0

by Fragment clustering, Fragment f0 is regarded as
one of the Fragments in the next iteration of
Fragment clustering in which other Fragments are
considered for selecting the next reference.

The Fragment clustering algorithm used in the
performance evaluation is illustrated in Fig. 6.
Table 3 shows an example of Fragment clustering.
In this example, the reference Fragment contains
``charge it to'' only. All distances were measured
from this reference Fragment. Two Fragments

``bill it to'' and ``charge to'' were merged into the
reference Fragment. In the Fragment list in Ta-
ble 3 based on the preceding context, for instance,
the maximum di�erence in the distance, Np

(``charge it to''), yielded 18 candidate Fragments.
The maximum number of candidates among the
three types of distance N (``charge it to'') was 26
based on Eq. (12). The reference Fragment
``charge it to'' and other two Fragments ``bill it to''
and ``charge to'', which were listed within the
ranking N (``charge it to'')� 26, were merged into
the reference Fragment to form the Fragment
grammar.

Fig. 7 shows an example of the Fragment
grammar generated through the algorithm with
the following parameter values. The number of
words in a phrase was constrained to be three or
less. Each phrase observed 30 times or more in the
training transcription was selected as a candidate
to participate in clustering. The maximum number
of candidate Fragments Nm� 80. The Fragment

Table 3

An example of Fragment clustering with reference Fragment f0: ``charge it to''

Rank Preceding context Following context Call-type

Phrase: fi Dp(f0 fi) Phrase: fi Df (f0 fi) Phrase: fi Dc(f0 fi)

1 charge it 0.01 charge this to 0.53 charge it 0.01

2 bill it to 0.47 it charged to 0.55 it to my 0.02

3 bill it 0.48 this call on 0.55 and charge it 0.03

4 put it on 0.67 trying to use 0.55 and bill it 0.04

5 have it 0.84 put this on 0.59 bill it to 0.08

6 put it 1.03 this on 0.63 it to 0.09

7 charge 1.35 put it on 0.66 call and bill 0.09

8 I keep getting 1.44 call using 0.67 and have 0.10

9 then I 1.64 charge to 0.68 bill it 0.10

10 T calling card 1.81 bill it to 0.71 charged to my 0.10

. . . . . . . . . . . . . . . . . . . . .

17 I can't seem 2.42 like to use 0.88 to my 0.17

18 they said 2.52 Np using 0.88 charge to 0.18

19 charge to 3.04 it on 0.91 to bill 0.21 Nc

20 he 3.07 use 0.94 like to bill 0.27

21 I didn't 3.23 billed to 1.10 have it 0.29

22 reverse 3.26 it billed to 1.16 it charged to 0.29

23 I can't get 3.29 call with 1.38 billed to my 0.30

24 for some reason 3.30 bill this to 1.91 a call and 0.31

25 see if 3.31 charge to 2.35 it charged 0.31

N(f0) 26 every time 3.36 on 2.79 Nf billed to 0.32

27 I got 3.48 give you 4.02 phone call and 0.34

28 I can't 3.55 number to 4.69 to charge 0.37

. . . . . . . . . . . . . . . . . . . . .
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clustering algorithm yielded, in total, 288 phrases
in 111 Fragments. The average number of phrases
per Fragment was 2.59 (� 288/111). The Fragment
named á000ñ consists of 9 phrases as shown in
Fig. 7. This Fragment contains the maximum
number of phrases. The Fragment demonstrates
that several kinds of greeting phrases frequently
observed at the beginning of spontaneous speech
dialogs, were clustered by our algorithm.

4.2. Alternative methods for Fragment clustering

This section addresses alternative methods for
Fragment clustering and compares them to deter-
mine the most appropriate method for this type of
clustering. Although the method so selected is

described above, it is interesting to discuss the al-
ternatives for Fragment clustering. Section 4.2.1
describes another method to determine the Frag-
ment subsets. Although the three types of distance
are processed independently to determine the
Fragment subsets, these distances can be merged
into one distance. The clustering method using this
single distance will be discussed in Section 4.2.2.
An alternative Fragment clustering algorithm that
does not use one threshold but individual thresh-
olds for the three types of distance will be de-
scribed in Section 4.2.3.

4.2.1. Determination of Fragment subset
It may be possible to determine Fragment

subsets without considering the distance from the

Fig. 7. Example of Fragments.
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reference Fragment. For instance, the nearest N
Fragments from the reference Fragment in each
list can be selected as the candidate Fragments.
The Fragment clustering algorithm can be pro-
cessed by using such candidate Fragments. Several
kinds of new Fragments can be obtained by
varying N. However, the threshold N is not based
on the syntactic or semantic procedures so it is
very di�cult to determine N for the di�erent kinds
of reference Fragment. Therefore, the number of
candidate Fragments in each Fragment list should
be determined based on the syntactic or semantic
similarity among the Fragments.

4.2.2. Mingled Fragment distance
The clustering method described above is based

on the approach of not mingling each ranking
order obtained from the Fragment distances until
the ®nal stage of Fragment clustering. However,
several other methods that mingle the three types
of Fragment distance during Fragment clustering
can be also applied. In these methods, ®rst the new
distance D�f0fi� between the reference Fragment f0

and a Fragment fi is calculated by mingling the
three types of distance described in Section 3.4.
The Fragments within a distance threshold are
merged into the reference Fragment. Eqs. (14) and
(15) are examples of possible distance functions
D�f0fi�.

D1�f0fi� � maxfDf�f0fi�;Dp�f0fi�;Dc�f0fi�g; �14�

D2�f0fi� � Df�f0fi� � Dp�f0fi� � aDc�f0fi�; �15�

where Df�f0fi�, Dp�f0fi� and Dc�f0fi� are the dis-
tances focusing on following and preceding con-
text probability distributions, and call-type
probability distribution, respectively. a is the co-
e�cient for weighing the semantic distance. As
described in Section 3.4, the syntactic distances are
calculated by using the context frequency list, and
the semantic distance is estimated from the distri-
bution of the call-type frequency. Therefore, it is,
in general, di�cult to compare syntactic and se-
mantic distances directly. In order to align the
range of these two distances, the coe�cient a is
applied in Eq. (15). The advantage of these alter-
native distances is that between two syntactically

and semantically similar Fragments the distances
are extremely short, while dissimilar Fragments
have long distances. On the other hand, it is clear
that these alternative distances are increased if one
of the original distances Dp; Df or Dc is long, even
though the other original distances are short: i.e.,
the two Fragments f0 and fi are comparatively
similar from that viewpoint. In the Fragment
clustering algorithm, if one of the three distances
between a Fragment and the reference Fragment is
the shortest of all distances, the Fragment should
be preferentially selected as a candidate. Thus the
mingled distance is not a useful criterion for de-
termining similar Fragment candidates. In this
study, the original distances are not mingled until
the ®nal stage of Fragment clustering.

4.2.3. Clustering based on individual number of
candidates

In Fragment clustering, the number of candi-
dates N�f0� is determined by using the maximum
number of candidates among the three types of
distance as shown in Eq. (12). Other methods for
determining N�f0� can be discussed. For instance,
each number of candidate Fragments
Np�f0�; Nf�f0� and Nc�f0� can be used in each
Fragment list. In this case, the criterion of the
Fragment classi®cation is de®ned by

f 00 � fijOp�fi�6Np�f0� \ Of�fi�
�

6Nf�f0�
\ Oc�fi�6Nc�f0�

	
: �16�

The advantage of this method is that Fragment
clustering is performed by using the Fragment list
made under a strict condition, and the clustering
process will generate a Fragment grammar con-
sisting of reliably similar Fragments. However, if
Eq. (16) were applied to Fragment clustering and
only few Fragments had short distances in a
Fragment list, few Fragments would be selected as
candidates so there may be no Fragment com-
monly listed within the ranking in all three Frag-
ment subsets. As described in Section 4.2, a
Fragment should be selected as the candidate as
much as possible, even if just one of the three
distances from the reference Fragment is short.
The criterion based on the minimum number of
candidates among three types of distance may
cause the same result for many reference Frag-
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ments. Therefore, the clustering algorithm uses the
maximum number of candidates N�f0�.

4.3. Generalization of Fragment grammar

Sometimes, a given Fragment contains sub-
strings which are themselves Fragments with a
higher frequency of occurrence than the given
Fragment. When this is the case, the given Frag-
ment can be ``parsed'' ± i.e., the Fragment sub-
strings are replaced by the appropriate non-
terminal symbols representing them. The phrase
``want to make'' in Fragment á015ñ in Fig. 7, for
instance, can be decomposed into ``want'', ``to''
and ``make''. The words ``want'' and ``make'' can
be replaced by non-terminal symbols á005ñ and
á002ñ, respectively. Therefore, the phrase ``want to
make'' can be represented as ``á005ñ to á002ñ''. This
parsing allows the Fragment grammar to acquire
the ability to represent not only phrases given as
input but also word sequences not observed in the
training transcriptions. Fig. 8 shows an example of
Fragment generalization by parsing Fragments. In
this example, the phrases in Fragment á015ñ are
generalized by using Fragments á002ñ and á005ñ.
The three phrases in Fragment á015ñ can be rep-
resented as ``á005ñ to á002ñ'' and ``like to á002ñ''.
These non-terminal symbols in Fragment á015ñ are
expanded into phrases such as ``need to place'' and
``would like to place''. In consequence of this gen-

eralization, the Fragment á015ñ has acquired ad-
ditional seven phrases such as ``want to place'',
``would like to make'' and ``have to place''.

The generalization of Fragments is performed
in the order of Fragment frequency. When a set of
Fragments has been created, the frequency of each
Fragment is obtained by summing the frequencies
of the phrases represented by that Fragment. A
parser for Fragment generalization ®rst sorts
Fragments in order of Fragment frequency. The
parser then selects a Fragment in the frequency

Fig. 8. An example of Fragment generalization.

Fig. 9. Histogram of phrases in a Fragment.
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order and performs the following procedure. The
parser looks for each phrase classi®ed in the se-
lected Fragment inside other Fragments. When the
corresponding word sequence is spotted in a
Fragment, it is replaced by the appropriate non-
terminal symbol representing the selected Frag-
ment. This replacement is iterated until every
Fragment has been selected at least once. Fig. 9
shows the histogram of the number of phrases in
each Fragment. By applying Fragment general-
ization, 495 phrases were created in 85 Fragments.
This reveals that the average number of phrases in
a Fragment, 5.82 (495/85), was increased by gen-
eralization.

For call-type classi®cation, Salient Grammar
Fragments are automatically generated from the
parsed training transcriptions and associated call-
types (Gorin et al., 1997). Salient Grammar
Fragments are traditionally generated by using the
training transcriptions not parsed with the Frag-
ment grammar. In this case, each Salient Grammar
Fragment consists of a call-type of the highest
association score and a corresponding word se-
quence. Namely, Salient Grammar Fragment is
applied to only one word sequence. However, Sa-
lient Grammar Fragment, which can be applied to
several kinds of word sequences, is generated if the
training transcriptions parsed with Fragment
grammar are used for the generation. In this case,
the sequence corresponding to a call-type in each
Salient Grammar Fragment consists of conven-
tional words and non-terminal symbols for Frag-
ments. Fig. 10 shows examples of a Salient
Grammar Fragment. The Fragment grammar en-
ables the Salient Grammar Fragment to represent
several kinds of word sequences having both syn-
tactic and semantic similarity. The call-type clas-
si®cation process is shown in Fig. 11. In the call-
type classi®cation process, the ASR output is ®rst
parsed by using the Fragment grammar and the
Salient Grammar Fragments are extracted from
the parsed output. A call-type classi®er determines
1st and 2nd most likely call-types for each utter-
ance by using the association between Salient
Grammar Fragments and call-types. The call-type
classi®cation performance is evaluated by a scorer
using the call-type assigned to each test-set utter-
ance.

5. Experiments

The engine used for speech recognition is the
AT&T WATSON recognizer (Sharp et al., 1997).
The speech recognition process is performed by
using the Variable N-gram Stochastic Automaton
(VNSA) (Riccardi et al., 1996) as the language
model. The acoustic model for the process was
trained with a database of telephone-quality
spontaneous utterances. Out-of-vocabulary words
were not dealt with in the experiments. In order to
con®rm that there is no need to deal with out of

Fig. 10. An example of Salient Grammar Fragments.

Fig. 11. Call-type classi®cation process.
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vocabulary words in this task, we examined the
training transcriptions from the following two
viewpoints.

Out-of-vocabulary words include many proper
nouns such as city and personal names in this task.
Therefore we ®rst examined proper nouns in the
training transcriptions. Words and phrases in the
training transcriptions were classi®ed into several
categories by using word lists. Each word list
consists of proper nouns such as country, city, or
personal names. Some phrases can be classi®ed
into two or more categories. The phrase ``New
York'', for instance, is either a city name or state
name in the United States. Some word lists were
prepared to store such words and phrases. In total,
1407 words and phrases were extracted from the
training transcriptions and were classi®ed into one
of 16 categories. They were observed 5787 times in
the training transcriptions. The other 2254 words,
not classi®ed into any category, were observed
136,179 times. Therefore, the token coverage of
the proper nouns and other words is approxi-
mately 4.1% (� 5787/(5787 + 136,179)) and 95.9%,
respectively.

The disposition of the out-of-vocabulary words
can be estimated by examining low frequency words
in the training transcriptions. We therefore
counted the number of low frequency words in the
training transcriptions as the next stage of this
examination. Table 4 shows numbers of low fre-
quency words and their numbers of tokens. For
instance, the number of words observed twice in
the training set was 316. The token coverage of the
words observed three times or less was approxi-
mately 1.5%. The test set is assumed to have sim-
ilar disposition to the training set, because the test
set was created from the same set of transcriptions
as the training set was created. The goal of this
study is to extract the continuous word sequences

frequently linked to the call-types. Words used
sparsely are not important in this task. We there-
fore concluded that out-of-vocabulary words
should not be dealt with in the experiments.

The training transcription contained 7844 sen-
tences while the test transcription contained 1000
sentences. For Fragment acquisition, the number
of words in a phrase was constrained to be three or
less in this experiment. Each phrase observed 30
times or more in the training transcription was
selected as a candidate to participate in clustering.
A total of 1108 candidate phrases were obtained.
The context length Nc for computing the distances
between two Fragments was set to one. 3582
context phrases were used for creating the syn-
tactic probability distributions. The maximum
number of candidate Fragments, Nm, was 80.

In call-type classi®cation, there are two impor-
tant performance measures. The ®rst measure is
the false rejection rate, where a call is falsely re-
jected or classi®ed as call-type other. Since such
calls are transferred to a human operator, this
measure corresponds to a missed opportunity for
automation. The second measure is the probability
of correct classi®cation. Errors in this measure lead
to misunderstandings that must be resolved by a
dialog manager (Boyce and Gorin, 1996; Abella
and Gorin, 1997). Fig. 12 illustrates the probabil-
ity of correct classi®cation versus the false rejec-
tion rate. As a baseline for comparison, the
performance without the Fragment grammar is
also shown in Fig. 12. The curves in Fig. 12 were
generated by varying salience threshold (Gorin,
1996).

The average of the di�erence in the call-type
classi®cation performance was calculated by using
Eq. (17).

Pa �
R rh

rl
�pfg ÿ pb� df

rh ÿ rl

; �17�

where Pa is the average of the di�erence in the
probability of correct classi®cation between the
language model as the baseline and that using
Fragment grammar. pfg and pb denote the proba-
bilities of correct classi®cation achieved by the
Fragment grammar and baseline, respectively. rl

and rh de®ne the range of the false rejection rate
which were set to 7.4% and 48.3% for calculating

Table 4

Low frequency words

Word frequency Number of words Number of tokens

1 957 957

2 316 632

3 161 483

Total 1434 2072
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the di�erence in rank 1. The probability of correct
classi®cation pfg and pb can be estimated by in-
terpolation. By using pfg; pb and the aligned sec-
tion of the false rejection rate rl and rh, the average
of the di�erence in the probability of correct
classi®cation was evaluated using Eq. (17). As a
result, the average di�erence in the call-type clas-
si®cation performance in rank 1 was approxi-
mately 2.2%.

On the other hand, the maximum di�erence in
the probability of correct classi®cation Pm was
obtained by using Eq. (18).

Pm � max�pfg ÿ pb�: �18�
By interpolating the performance curves of

rank 1, the di�erence in the probability of correct
classi®cation between baseline and Fragment
grammar is obtained. The result revealed that
approximately 2.8% of the maximum performance
di�erence was observed where the false rejection
rate was 35.7%. This result shows that the Frag-
ment grammar achieved the best performance at
rank 1 compared to the conventional approach
when the false rejection rate was set to 35.7%.

In total, these results show that call-type clas-
si®cation performance is improved by the Frag-

ment grammar. This improvement is because the
Salient Grammar Fragments used in the call-type
classi®er now accept various phrases that are
syntactically and semantically similar to the orig-
inal phrases used in the baseline system. From the
results of this experiment, we can conclude that by
generalizing Fragments, unobserved phrases are
handled without degrading the call-type classi®-
cation performance. An example of the variety of
phrases accepted by a Salient Grammar Fragment
is illustrated in Fig. 13. The Fragment ``BOS á017ñ
á004ñ á013ñ'' shown in Fig. 13 has an association
with the call-type ``COLLECT''; the association
score is 0.97. The Fragment classes ``á017ñ'',
``á004ñ'' and ``á013ñ'' used in this Salient Grammar
Fragment can be expanded into phrases and other
Fragment grammars. Fragment ``á017ñ'', for in-
stance, is expanded into two paths, ``á003ñ'' or ``I
á005ñ''. The consequence of this expansion, the
fully expanded Salient Fragment network, is
shown in Fig. 13(c). This phrase network accepts
126 types of phrases. It is interesting to note that

Fig. 13. An example of phrases accepted by a Salient Grammar

Fragment.

Fig. 12. Call-type classi®cation performance.
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some phrases represented by this Salient Grammar
Fragment such as ``BOS I like to make a collect
phone call'' are not observed in the training tran-
scriptions. Altogether, 246 unseen salient phrases
have been discovered by clustering and generaliz-
ing the Fragment grammar.

6. Conclusion

We have described a new method for auto-
matically acquiring Fragments for understanding
¯uent speech. Fragments representing a set of
syntactically and semantically similar phrases were
generated by using three probability distributions:
of following words, of preceding words, and of
associated call-types. The similarity between
phrases was measured by applying the Kullback±
Leibler distance to these three probability distri-
butions. Phrases that were close in all three dis-
tances, were clustered into a Fragment. By
spotting small Fragments inside larger phases, and
then carrying out the appropriate substitutions of
non-terminal symbols into the large phrases, the
Fragment was able to detect 246 salient phrases in
the test set that were not present in the training set.
This result revealed that unseen phrases were au-
tomatically discovered by the proposed method.
The experimental results show that the average
and maximum improvements in call-type classi®-
cation performance of 2.2% and 2.8% were
achieved, respectively, by introducing the Frag-
ment.

Future works of this study include improving
Fragment performance on call-type classi®cation.
In this study, we focused on continuous word se-
quences in which the number of words was three
or less, and whose frequency was 30 or more in the
training transcriptions. The maximum number of
candidate Fragments was constrained to be 80. By
varying these parameter values for Fragment
clustering, we obtained the best performance on
call-type classi®cation. However, when more
training transcriptions become available, we will
reconsider these parameter values because di�erent
sets of Fragment generated using di�erent values
may yield improved performance on call-type
classi®cation.

It is also interesting to introduce non-terminal
symbols for the proper nouns common in this task.
It is currently di�cult for our de®nition of the
Fragment distance to deal with low frequency
phrases. Though many kinds of proper nouns such
as city and personal names were observed only a
few times in this task, a proper noun can be re-
placed by another if both of them are assigned to
the same class. By introducing non-terminal sym-
bols for such proper nouns, the training tran-
scription is ®ltered and proper nouns are replaced
by non-terminal symbols. The frequency of each
non-terminal symbol can be high enough for cal-
culating probability and the Fragment distance
based on the Kullback±Leibler measure. This ap-
proach will make new Fragments consisting of not
only word sequences but also non-terminal sym-
bols.
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Appendix A

In this appendix, the estimation of Fragment
bigram probability is described with particular
emphasis on the probability distribution for the
following context p̂�st�1

i jf t
1�. This estimation

method is used in the Fragment distance calcula-
tion. Probability distributions of preceding con-
texts and call-types can be also estimated in a
similar manner. In general, the probability of a
transition from Fragment f1 to context si is cal-
culated by Eq. (A.1).

p̂�st�1
i jf t

1� �
C�f t

1st�1
i �

C�f1� ; �A:1�

where C�f1� and C�f t
1st�1

i � denotes the frequency of
Fragment f1 and the frequency of Fragment f1

followed by context si, respectively. However, the
probability for contexts having no transition from
f1 in the training set is poorly estimated by
Eq. (A.1) since C�f t

1st�1
i � � 0. Also, for some
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contexts having low transition frequency, the
probability cannot be calculated with high reli-
ability. Therefore, a threshold s is introduced to
determine whether or not the transition frequency
of a context is high enough for the probability to
be estimated with Eq. (A.1). Eq. (A.1) is applied
only if the transition frequency is equal to s or
more, i.e. C�f t

1st�1
i �P s. Consequently, we con-

clude that there is a relationship between low and
high transition frequency as shown in Eq. (A.2).
Eq. (A.2) implies that the total probability for low
frequency transition can be obtained by subtract-
ing the total probability of high frequency transi-
tions from 1.X
si2Sl�f1s�

p̂�st�1
i jf t

1� � 1ÿ
X

si2Sh�f1s�
p̂�st�1

i jf t
1�: �A:2�

In Eq. (A.2), Sl�f1s� and Sh�f1s�, are the set of
contexts based on context frequency and on the
threshold s as shown in Eqs. (A.3) and (A.4), re-
spectively.

Sl�f1s� � fsijC�f t
1st�1

i � < sg; �A:3�

Sh�f1s� � fsijC�f t
1st�1

i �P sg: �A:4�
Eq. (A.5) is then applied to estimate the prob-

ability for the context having low transition fre-
quency (Ney and Essen, 1993; Riccardi et al.,
1996).

p̂�st�1
i jf t

1� �
C�si�P

sj2sl�f1s�
C�sj� 1ÿ

X
sj2sh�f1s�

p̂�st�1
j jf t

1�
8<:

9=;:
�A:5�

In Eq. (A.5), the sum of transition probability
for contexts having low transition frequency is ®rst
obtained by using the relationship shown in
Eq. (A.2). The sum of probability for low fre-
quency contexts is then distributed based on con-
text unigram probability.

However, if every context following Fragment
f1 has transition frequency greater than s, the sum
of transition probabilities for contexts having low
transition frequency is exactly zero in Eq. (A.2). In
order to cope with this problem, the following
equations are applied. First, the sum of probability
for low frequency contexts, L�f1� is introduced.

L�f1� �
X

sj2Sl�f1s�
C�f t

1st�1
i �: �A:6�

If L�f1� is not equal to zero, Eqs. (A.1) and
(A.5) can be applied to estimate the probability.
On the other hand, if L�f1� is equal to zero,
Eq. (A.7) is applied to estimate the transition
probability for contexts having high transition
frequency.

p̂�st�1
i jf t

1� �
C�f t

1st�1
i �

C�f1� � d
; �A:7�

where d is a small constant for all Fragments. Use
of Eq. (A.7) in the case of L�f1� � 0 implies that
the sum of transition probability for contexts
having high transition frequency can be less than 1
as shown in Eq. (A.8).X
si2Sh�f1s�

p̂�st�1
i jf t

1� �
X
8si

C�f t
1st�1

i �
C�f1� � d

� C�f1�
C�f1� � d

< 1: �A:8�

As a consequence of using of Eqs. (A.5) and
(A.7), the probability for contexts with low tran-
sition frequency can be estimated by Eq. (A.9).

p̂�st�1
i jf t

1� �
C�si�P

sj2Sl�f1s�
C�sj� 1ÿ C�f1�

C�f1� � d

� �

� C�si�P
sj2Sl�f1s�

C�sj�
d

C�f1� � d
: �A:9�

Thus the following equations are applied for
probability estimation.

p̂�st�1
i jf t

1� �
C�f t

1st�1
i �

C�f1�
if L�f1� > 0 and si 2 Sh�f1s�; �A:10�

p̂�st�1
i jf t

1� �
C�si�P

sj2Sl�f1s�
C�sj� 1ÿ

X
sj2Sh�f1s�

C�f t
1st�1

j �
C�f1�

8<:
9=;

if L�f1� > 0 and si 2 Sl�f1s�; �A:11�

p̂�st�1
i jf t

1� �
C�f t

1st�1
i �

C�f1� � d

if L�f1� � 0 and si 2 Sh�f1s�; �A:12�
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p̂�st�1
i jf t

1� �
C�si�P

sj2Sl�f1s�
C�sj�

d
C�f1� � d

if L�f1� � 0 and si 2 Sl�f1s�: �A:13�
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