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Automatic Speech Recognition
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Abstract—We areinterested in the problem of adaptivelearning
in the context of automatic speech recognition (ASR). In this
paper, we propose an active learning algorithm for ASR. Au-
tomatic speech recognition systems are trained using human
supervision to provide transcriptions of speech utterances. The
goal of Active Learning is to minimize the human supervision
for training acoustic and language models and to maximize the
performance given thetranscribed and untranscribed data. Active
learning aims at reducing the number of training examples to be
labeled by automatically processing the unlabeled examples, and
then selecting the most informative ones with respect to a given
cost function for a human to label. In this paper we describe how
to estimate the confidence score for each utterance through an
on-line algorithm using the lattice output of a speech recognizer.
The utterance scores are filtered through the informativeness
function and an optimal subset of training samples is selected.
The active learning algorithm has been applied to both batch and
on-line learning scheme and we have experimented with different
selective sampling algorithms. Our experiments show that by
using activelearning the amount of labeled data needed for a given
word accuracy can be reduced by more than 60% with respect to
random sampling.

Index Terms—Acoustic modeling, active learning, language
modeling, large vocabulary continuous speech recognition, ma-
chine learning.

. INTRODUCTION

to adapt themodel [3]-[6]. Even, in the adaptation framework
it is not determinedhow to track time-varying statistics.

In this work we take a fundamentally different approach to
train adaptive LVCSRs based on the concept of active learning
(AL). Active learning has the distinct advantage of efficiently
exploiting transcribed data and thus reduces human effort.
Moreover, modeling under the active learning paradigm has the
intrinsic capability to adapt to nonstationary events by means
of a feedback mechanism in the training algorithm. Active
learning can optimize the performance of LVCSRs by selec-
tively sampling the number of examples that maximizes word
accuracy. In the next two sections we contrast the traditional
method ofpassive learning versus thactive learning approach.

In Section Il we define the problem of active learning in its
general formulation. In Sections IV and V we show how active
learning applies to both acoustic and language modeling for
LVCSR. In the last Section VI we give experimental results to
support the claims in the previous sections.

Il. PASSIVE LEARNING

The most established method for training acoustic and
language models is supervised training. In this case the set
of training examples are speech utterancese &X', drawn
at random from the set’, which has been selected a-priori

N THE 1990s, there was a large body of research work @d fixed in timeé All of the examples are transcribed by

data driven algorithms for Large Vocabulary Continuougsuman supervision and the transcriptions are provided with
Speech Recognition (LVCSR). This work has had permanefitime delayAr > 0. This is in contrast withunsupervised
impact on state-of-the-art automatic speech recognition [klrning [7]-[10], where a set of training examples is generated

and stochastic modeling [2]. In those papers, the fundamendatomatically without supervisiopAr ~

0,Ax > 0).In

assumption is on the nature of the input channel statistics. Tiig. 1 we give the architecture of the learning process in the
assumption is that the performance of the stochastic models @ige of supervised learning. The training examgles X" are
based on the fact that the training examples are drawn randomiynan labeled and their statistics are used to estimate means
from a large sample seét. Moreover, most of these algoritth(u) and variance$o) of the stochastic models (e.g.;gram,

are trained and tested using the identical and independgiiMs). The statistical models are evaluated in terms of error
distribution (i.i.d.) assumption. This approach leads to modeigtes- (e.g., Word Error Rate for ASR). In this learning scheme
that are by design suited for stationary channels. While thigere is no relation between the expected error rate and the set
assumption holds for a large number of cases, it has two dragf-training examplest’. In other words, if a new set of set of
backs. First it makes inefficient use of data which is eXpenSiﬂgining examp|es¥’ are provided’ it is not possib|e to predict

to transcribe. Second it restricts the machines behavior to adr:mh,s set would decrease or increase the error rate estimated
dynamically to nonstationary input channels. In the most recegi v

work the approach to adapt to nonstationary channels has beemhijs specific type of supervised training is also capaskive
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learning [11]. The approach is passive for the following reasons.

Selection of training set X’. The training seft’ is fixed
a-priori and for a given time horizom\ 7.
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1In practiceX is the by-product of theata collection, which is usually done
via Wizard-of-Oz paradigm or by an automated spoken dialog system.
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Fig. 1. Supervised passive learning. . . . . . .
9 P P 9 Fig. 2. Supervised active learning architectyzeand o are the statistical

) o o parameters of acoustic or language models.
. Selection of labeled training examples. Training and

test sets are sampled randomly frokh All examples )
x are considered equaliyformative for the purpose B- The Algorithm

of learning. Nox is disregarded or generated automat- pagsive learning delegates the burden of estimagivag
ically. models to the estimation techniques (e.g., acoustic or language
modeling). In contrast, active learning emphasizes the role of
the input selection for the purpose of improving the expected
A. Background error rate over time.

The search for effective training data sampling algorithan Active learning is defined in terms of two basic concepes:

has been studied in the machine learning research. Previ q?gve sampling and error rate prediction as function of the

work in active learning has concentrated on two approaches: ctoé?—m'ng examples [11]. In Fig. 2 we give the general scheme

tainty-based methods and committee-based methods. terthe ac'Five Iearn_ing machi.nes. In the general formulation, active
tainty-based methods, an initial system is trained using asmal'eam'ng considers the input = X(t? as an examplg (g.g.,
set of annotated examples [12]. Then, the system examines H‘éeCh L.Jtter.ancef, feature vector)' being sampleq attirfieis
labels the unannotated examples, and determines the certai ﬁé@ulanon 1S suitable for dynqmlc syster_ns_ which are sought
of its predictions of them. Th& examples with the lowest cer- to rack stat!onary af‘d nonstatlonary stgpstlcs. Adr = o
tainties are then presented to the labelers for annotation. In the hgve active learning in .th‘? more tra_cmlonal sense @iin
committee-based methods, a distinct set of classifiers is also cre!™ zation problem over a-priori setof Frammg exampléfs[ll].
ated using the small set of annotated examples [11], [13]. T the rest of the paperwe will congder both scenarios as they
unannotated instances, whose annotations differ most when &%ply _to autpmatlc speech recognition. o
sented to different classifiers are presented to the labelers for ani/hile active leaming can act upon each individual sample
notation. In both paradigms, a new system is trained using fhe): Selective sampling is optimized by bufferiig(t)) the
new set of annotated examples, and this process is repeated GAHIPIES Over a time horizodT" = .J
the system performance converges. A recent committee-based
method, which is applicable to multiview problems (i.e., prob- B(t) = (x(t),...,x(t+J)). (€8]
lems with several sets of uncorrelated attributes that can be used
for learning) isco-testing [14]. In co-testing, the committee of ~Selective sampling searches for the subset of examples that
classifiers is trained using different views of the data. are mostly informative to decrease the word error ¢ata Sec-

In the language processing research, certainty-based metHiais VI we address the relation between thand the first order
have been used for information extraction, and natural languatjéierence for the error rate)(e).
parsing [15]-[17], committee-based methods have been used foket us assume that there exists a functifx(t)), which
text categorization [18], [14]. Our previous work concentratecbmputes an estimate of the error rate for each examtle
on using active learning for language model training for ASRhe informativeness function 7(®) assigns a weight to each
[19], [20], and spoken language understanding [21]. Concuraining example as a function of its error estimate. In Fig. 3 we
rently, [22] has proposed a similar selective sampling approalcave two candidate functions which characterize two different
for ASR, and have shown improvements for training acoustiearning strategied; (®) is the uncertainty based linear func-
models on a small vocabulary task. tion and it ranks monotonically all examples starting with the

I1l. ACTIVE LEARNING
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Fig. 3. Characterization of the Informativeness functi¢®). Thex axisis  l€ctively sampled training sets using ML trained stochastic

for the error estimate&:). They axis is for the the informativeness function models.

I(®) which could be either linearly related with wifbk(I; ) or skewed around ; ; ; ; ;

the random guess estimate, (I, ). Inthe next section we Wlll_explon the active _Ie_:arnlng concepts
and apply them to automatic speech recognition.

lowest error rate In this case the informativeness of an example IV. ACTIVE LEARNING FORASR
x will favor the exploitation strategy in active learning and ex-

pecting high reward from human supervision of poorly pre-

dicted samples. However, in general the classes we are |ear,ﬁ,qgmization of the word error rate (WER) for a given training
are not separable and we should expect examples that are*8f test set, both drawn at random from a fixedin this pro-

ther outliers or hard to learn. This leads to an alternate infdi€dure, it is assumed that all training examples wsaéul. In

mativeness functiod(®), which penalizes samples with verythe case of the so-callethta mismatch there is a performance

high (and low) error rates and emphasizes samples which SaP Petween expected (i.i.d. case) and actual performance (non-
estimated (almost) randomly. In Fig. 3,(®) is plotted for stationary case). Traditionally this problem is approached with

the case of random predictions occurringgat The triangular Modél adaptation techniques with a supervised passive scheme
shaped informativeness functids(®) has only one parameter, [26], [6]. However, even in the latter case it is not possible to au-
0 < a < 1, to be computed based on held-out data. Let us fomatically detect thenismatch or the time-varying statistics.

call here that the examples ranking is dependent on the currenf:Ctiveé le€arning encapsulates the traditional LVCSRs sta-

model parameters and thus examples may have different infistical estimation techniques into the framework of adaptive
mativeness score at different time intervals. machine learning. It detects automatically the training exam-

Theinformativenessfunction(®) allows us to rank each ex- ples that are difficult to recognize because of data sparseness
amplex and associate an integer numbewhich spans from © nonstationarities. In general it selects, out of all the avail-
1 to the size of the buffetk. If more than one independentable speech corpora, only thpse samples that max_in_1izes word
error estimator is provided then there is the problemmerging  accuracy (1-WER), overcoming the problem of training from

ranked lists, which is a research topic well studied in statistif&'tliers or superfluous data. In Fig. 4 we show the t¥pical
and machine learning [23], [24]. The last step of selective satf2mning curves of LVCSR systems for a latgeining sett’.
pling (see Fig. 2) is to take the fir&f examples from the ranked Y€ are interested in minimizing the error ratg,,,, regardless
list (R(B(#))) and have it labeled (human). of the amount of samples needed to train the stochastic models.
Once the statistics and the error estimator parameters hjvgeneral if we train from all the available training examples,
been updated, the learning loop continues by processing a rigf error rate will be suboptimgk, > emin). This is due to
batch (B()) of training examples. In general if we are noPVertraining or to the presence of outliers. From a sample size
making any assumptions about the model learning algoritHRRiNt Of View, 7y, is the optimal value and the performance
(black box paradigm) there is no guarantee that the expect&gturation occurs at earlier stages of trainingi, < V). _
error rate will decrease as function of the selected samplesTN€ central concept in active learning is selective sampling
There are convergence results for particular learning algorithfi@M the training set. There are two components, namely the
such as the perceptron [25], however they do not apply in tF¥'KiNg (R()) of each sample int’ and the selection of a set

general case. In LVCSR, the class of estimation methodsdkexamples. The latter component controls directly the model
large, ranging from maximum likelihood (ML) to discrimina-Update rate. In the next sections we describe the core algorithms

tive training (DT). For ASR we will show strong experimentafor ranking (R()), estimating the error rate and training with

relation between recognition error and the sequence of &

In speech recognition the common training paradigm is the

] ) ) ) ] V. TRAINING WITH ACTIVE LEARNING
20bviously, any strictly monotonic function betweén= 0 and® = 1 will

provide one and only example ranking. A. Word Score Estimation

3Throughout the paper we will use the tefabel and depending on the con- . . .
text it willgrefer to d?ffcfrent types of human supervision? For ir?stance, in text Inthe literature, there are two Ieadlng methods for confidence
classification text transcriptions are annotated with a label which is one outg&tore estimation. The first one is based on acoustic measure-
a fixed set of allowed labels. In speech recognition, speech utterances are tran-
scribed using a set of guidelines to describe the event contained in them (e.g#In practice for LVCSRs, 10 K speech utterances are considered a reasonable
spoken words or speech disfluencies). size of the training set.
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Utterance Accuracy vs Mean Confidence Scores

We use the state times or approximate state locations on the
lattice, to align transitions that have occurred at around the same
time interval. We call the final structure psrot alignment. We

use the word posterior probability estimates on the best path of
the pivot alignments as word confidence scotgs, where we
usew; to denote a word and use the notat'tg@ to represent

, ; ; ; the confidence score of the word sequeage. . . , w,.

L L L
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For active learning, we used different approaches to obtain
utterance level confidence scores from word confidence scores
[19], and two of them resulted in a better performance. One
approach is to compute the confidence score of an utterance as
N axsusBBENEMEROH  the arithmetic mean of the confidence scores of the words that
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 . .

it contains

o
o
!

Relative Frequency
o

o
o
G

o
o

Fig. 5. (Top) Utterance accuracy versus mean confidence scores. For each bin "

the mean and the standard deviation are plotted. (Bottom) Relative frequency 1

histogram for mean confidence scores. Cop = 3 Z Cuw; - 2)
=1

Utterance Accuracy vs Voting Confidence Scores The second approach is using a voting scheme with a threshold.
The words with a score less than the threshold do not have any
contribution to the utterance score. The words with a confidence
score greater than the threshold contribute to the utterance score
by 1. The final utterance score is normalized by the utterance
length.

Q
S

=3}
S

@
S

B
[=)

Utterance Accuracy

N
S
I

O (T
o
o
V)

= . ; . ; ; ) . ; ; n
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1
Voting Score Cyn — — tr (Cwi> (3)
5 02
§ where
g 015
[
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0 " S P | .J.-_-_I --IJ.--.IJJ-_I.-J.J_.-._
S A S In Fig. 5(top) we plot the joint statistics of the mean confi-
Fig. 6. (Top) Utterance accuracy versus voting confidence scores. for each%ﬁ"nce scores (2) and the corresponding utterance acqracy
the mean and the standard deviation are plotted. (Bottom) Relative frequesgy. The confidence scores are binned uniformly (100 utterances
histogram for voting scores. per bin) and we plot the mean and standard variation of the ut-
terance accuracy within each bin. In Fig. 5 (bottom) we plot the

ments [27] and the other one is based on word lattices [28], [zg?_lative frequency histogram of the utterance confidence score.
The latter one has the advantage that the probability comptﬁé—can be seenin Fig. 5 the utterance score is linearly correlated
tion does not require training of an error estimator. There ai@ the utterance accuracy.
also hybrid approaches, which use features from the two typedn Fig. 6 we plot the joint statistics of the voting confidence
of methods [30]. scores (3) and the corresponding utterance accurbey «;)

We extract word confidence scores from the lattice output Bfing the same binning procedure used in Fig. 5.
ASR. A detailed explanation of this algorithm and the compar- Both figures are the experimental evidence forittferma-
ison of its performance with other approaches is presentedtiygness functions in Fig. 3.
[31]. A summary of the algorithm is as follows.

1) Compute the posterior probabilities for all transitions ifF- Al9orithm
the lattice. The algorithm for active learning for ASR is depicted in

2) Extract a path from the lattice (which can be the besEjg. 7. In the figure, the solid lines show the operation flow, and
longest or a random path), and call this asphet of the dashed lines show data flow. As the initialization step, we
the alignment. first train a speech recognizer, using a small set of transcribed

3) Traverse the lattice, and align all the transitions witbata,S;. The S; can also include off-the-shelf speech corpora.
the pivot, merging the transitions that correspond to thésing the initial ASR models, we automatically transcribe the
same word (or label) and occur in the same interval (hytterances that are candidates for transcriptfon(seeB( ) in
summing their posterior probabilities). Fig. 2). We then compute lattice based confidence scores for
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each word and use either (2) or (3) to assign an utterance based
score. We apply thénformativeness function I(¢) to predict
which candidates are more likely to reduce the word error
rate. We provide human transcriptions solely for the selected
utterances front,. This set of K' utterances are denoted by

Sy in the figure. We then add the transcribed utterances; to
and exclude them fron$,,. We iterate this process as long as
there are additional untranscribed utterances and we stop, if the
WER on the development test set has converged.

Train AM and LM’
Compute Confidences

Select Sample

D. Error Convergence :
Transcribe
By treating the model learning algorithms as black boxes, in E‘ / (Human)
general there is no guarantee to minimize the error rate mono- -
tonically. For instance for stochastic language modeling, most
of the state-of-the-art techniques are based on ML estimates of Jstosiu s
n-gram counts [32]. In acoustic modeling, there is a quite effec- -l syl
tive set of techniques that address the problem of minimizing No
the word error rate [1]. In both cases, it is an open research j— WER
. . L. . . Train AM"and LM  Yes |
problem how to combine the selective sampling into the estima- Converged) v
tion algorithm. It is straightforward to show that an arbitrarily \/
biased sampling bears no correlation with word error rate. How-
ever, in the case of ML based model estimation we will show an Fig. 7. The algorithm.
empirical monotonic correlation between recognition error rate
and two sampling methods: random and selective sampling of”® ‘ ‘ '
—— Selective

training sets using ML trained stochastic models.
Both AM and LM are retrained

VI. EXPERIMENTAL RESULTS °r

We performed a series of experiments to verify that the
posterior probabilities of the ASR pivot alignments can bg es
used to select more informative utterances to transcribe. F§)r

all these experiments, we used utterances fronHihe May |
Help You?*™ human-machine speech dialog database [33]. T&esof
language models used in all our experiments are trigram models
based on Variable Ngram Stochastic Automata (VNSA) [34].
The acoustic models are subword unit based, with triphonesst
context modeling.

Only AM is retrained

Only LM is retrained

A. Training and Test Data 50, o5 1 s 2 25 3

The initial set of transcribed utterances, which is used to train Number of Utterances x10

the initial acoustic and language models consists of 1000 utter- Fig. 8. Word accuracy learning curves.
ances (10 722 words). The additional set of transcription candi-

date utterances consists of 26 963 utterances (307 649 words .

The test data consists of 1 000 utterances (10 646 words). Inﬁilj generated learning curves for Word Accurgeyt — ¢),

. . ) fich are presented in Fig. 8. In that figure, there are three sets
experiments, where we retrained the acoustic model, we useﬁa . . .
1 000 utterance (11 515 words) development test set to tune% curves_for random sampling gnd selective sampling. In the
parameters (the number of mixtures, etc.) Sexpenment, both the acoustl_c and Ie_m_guage models are re-
e trained as we have more transcribed training data. In the center
) . experiment, the acoustic model is retrained for each set of new
B. Active Learning K examples, while the language model is fixed and trained from
Using the initial ASR acoustic and language models, we getire initial set. In the bottom experiment, the language model is
erated lattices and pivot alignments for our additional trainingtrained for each set of newly select&dexamples and the
data, and computed the confidence scores for words and uttemeustic model is fixed and trained from the initial set. In all
ances. We ran the algorithm for only a single iteration, with of them, the random and selective sampling curves meet at the
equal to the additional training set size, and sorted the dataseme point, as all the data is used in that qa@s& = o). Of
the order of increasing usefulness for ASR. We then incremasBurse, in practice active learning would stop where the perfor-
tally trained acoustic and language models, every 2000 utterance saturates. We plot the results using the arithmetic mean
ances (100, 250, 500, and 1000 utterances at the initial pointsf)the word confidence scores {s the mean functionin (2)) and
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I,(®), which performed slightly better thafa(®).5 From these —T
curves, we see that selective sampling is effective in minimizing i seleclive
the amount of labeled data necessary to achieve best word accu-,
racy. When we retrained both the acoustic and language modecls1,0 g
the best performance with random sampling was achieved usiig
all of the training data (27 963 utterances). We achieved the
same word accuracy (69.9%) with selective sampling and usir%?g
68% less data (with around 9 000 utterances). Therefore, by se-
lective sampling, it is possible to speed up the learning rate gf'*
ASR with respect to the amount of labeled transcriptions. V\§

also achieved a higher accuracy with active learning (71.0%) /WW/+V
than using all the data, when we used 19 000 utterances. At each

point on these curves, we selected the acoustic model parame- /

ters that maximize the word accuracy on the development testio’ ; ‘ 1

set, and plotted the real test set word accuracy with these param- 10t
eters. Number of training utterances
One reason for the better learning is that, with active
learning, we achieve a faster learning rate for new words and
newn-grams. Fig. 9 shows the vocabulary size learning curves,,
for random and selective sampling. As can be seen from the
figure, we detect new-grams at a higher rate with selectively
sampling as compared to random sampling. o7t
For a given acoustic channel (e.g., telephone), we are inter-__|
ested to evaluate the performance of AL for learning novel do-
main language. In this experimental scenario we use an offi-%
the-shelf acoustic model trained on the same acoustic chan§e44_
from off-the-shelf speech corpora. We used the set in the pre-
vious experiment to train the initial language model and usé&d |
these models to select examples from the buffer. The random::
and selective sampling learning curves are plotted in Fig. 10. | |
In this experiment, the best performance with random sampling
was again achieved using all of the training data (27 963 utter-%°- 7
ances). We achieved the same word accuracy (68.1%) with sez, ‘ . ; . ;
lective sampling and using 64% less data (with around 10 000 ° °° 1 Number OQ'Zne,ancesz *° mf
utterances). We achieved the best accuracy with active learning
(68.6%) when we used 13 000 utterances (less than half of g 10. Learning curves for novel domain language (off-the-shelf acoustic
the data). model).
We have simulated the dynamic case= x(t)) by sorting
the utterances according to their time stamps. The time spantsing all the data, and 1.7% points better than using half of the
the entire training set is three months of live recordings from tigita with random sampling.
“How May | Help You?” system. We have buffered 1 000 utter-
ances at time instast(J = 1 000) and selectively sampled 500C. Buffer Size

utteranceg A’ = 500), and transcribed them. We discarded the The puffering of the inpuk(t) in active learning is designed
remaining 500 utterances, and used the new set of transcri@gthcrease the probability of minimizing the error rate. To show
utterances in the selective samplingfer 1. In this experiment this we plotted the effect of buffer sizé, to the active learning
we used the acoustic model from the previous experiment (§R&formance in Fig. 12. We selected three set sizes for tran-
Fig. 10). Fig. 11 depicts the results of such an experiment. d@ription, K = {500, 1 000, 2 000} utterances. We selectively
this case, the selective sampling learning curve ends at aroughpled these utterances from buffers of different sizes. As can
14 500 utterances, as we are discarding half of the utterang@sseen from the figure, the word accuracy is maximized for a
in the buffer at each instai(¢). According to this plot, we pyffer of size three times the selection sige This shows that
again achieve the best accuracy with random sampling, usiigre is a maximum performance we can achieve using a given
64% less transcribed utterances with selective sampling. Wi3nscribed data set size. The performance degrades as we in-
only half of the additional data, we achieve a word accuracy gfease the buffer size, as our algorithm is not outlier-proof, and
68.9%, which is 0.8% points better than the accuracy achievgf percentage of outliers increases as we increase the buffer
SWe also used the normalized utterance likelihood as a sampling criteri&i,ze' Butin all cases, the performance is better than random sam-
and it gave inferior performance. pling, which corresponds to= 1 in Fig. 12.

Bigrams

Fig. 9. Vocabulary size learning curves.
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Number of Utterances x 10* (6]
Fig. 11. Word accuracy learning curves for the dynamic case ofAL=
x(t)). Examples are buffere@B(¢)) according to the time stamp of the data 7
collection. [7]
6 : : : : : : (8]
—— SelectionSize = 500 utterances
-+ SelectionSize = 1000 utterances
65.5 - —k— SelectionSize = 2000 utterances \» [9]
65 [10]
84,5
g [11]
5 64
3 4
< [12]
T 635
2
63 [13]
625 - =
[14]
62 —
[15]
515 ; ; ‘ ‘ ; . ‘
1 2 3 4 5 6 7 8 9
i (BufferSize=i * SelectionSize) [16]
Fig. 12. Effect of buffer.J) size on active learning performance.
[17]

VII. CONCLUSION

In this paper, we have proposed a novel approach to automatite!
speech recognition based on active learning. Active learning
makes efficient use of data which is expensive to transcribg19]
Moreover, active learning has the built-in feature to adapt to
nonstationary events by means of feedback mechanism in tI@g)]
training algorithm. Active learning can also be seen as an op-
timization algorithm that selects the training examples that opl?1]
timize the test set word accuracy. Our experiments show thgjy
by using active learning the amount of labeled data needed for
a given word accuracy can be reduced by more than 60% Wii}
respect to random sampling and word accuracy is improved &as

well. [24]
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