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Abstract. The problem of machine translation can be viewed as consisting of two subproblems (a)
lexical selection and (b) lexical reordering. In this paper, we propose stochastic finite-state models for
these two subproblems. Stochastic finite-state models are efficiently learnable from data, effective for
decoding and are associated with a calculus for composing models which allows for tight integration
of constraints from various levels of language processing. We present a method for learning stochastic
finite-state models for lexical selection and lexical reordering that are trained automatically from
pairs of source and target utterances. We use this method to develop models for English–Japanese and
English–Spanish translation and present the performance of these models for translation on speech
and text. We also evaluate the efficacy of such a translation model in the context of a call routing task
of unconstrained speech utterances.
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1. Introduction

The problem of machine translation (MT) can be viewed as consisting of two sub-
problems: (a) lexical selection, where appropriate target-language lexical items are
chosen for each source-language lexical item and (b) lexical reordering, where the
chosen target-language lexical items are rearranged to produce a meaningful target-
language string. We have proposed stochastic finite-state transducer (SFST) models
for these two subproblems (Bangalore and Riccardi, 2000, 2001) which can then be
composed into a single SFST model for Statistical Machine Translation (SMT).1

We explore the performance limits of such models in the context of translation in
limited domains. We are also interested in SFST models since they allow for tight
integration with a speech recognizer for speech-to-speech translation. In particular,
we are interested in one-pass recognition and translation of speech as opposed to
the more prevalent approach of translation of speech recognition transcriptions.

Finite-state models have been extensively applied to many aspects of language
processing including speech recognition (Pereira and Riley, 1997; Riccardi et al.,
1996), phonology (Kaplan and Kay, 1994), morphology (Koskenniemi, 1984),
chunking (Abney, 1991; Bangalore and Joshi, 1999) and parsing (Roche, 1999).
Finite-state models are attractive mechanisms for language processing since they
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are (a) efficiently learnable from data, (b) generally effective for decoding and (c)
associated with a calculus for composing models which allows for straightforward
integration of constraints from various levels of language processing.2

A number of approaches to SMT, including the seminal work at IBM (Brown
et al., 1993), are stochastic string transductions that map source-language strings
directly to target-language strings. There are other approaches to SMT where
translation is achieved through tree transductions that map source-language trees
to target-language trees (Alshawi et al., 1998a; Wu, 1997). There are also inter-
national multi-site projects such as VERBMOBIL (Wahlster, 2000) and CSTAR
(Woszczyna et al., 1998; Lavie et al., 1999) that are involved in speech-to-speech
translation in limited domains. The systems developed in these projects employ
various techniques ranging from example-based to interlingua-based translation
methods for translation between English, French, German, Italian, Japanese, and
Korean.

Finite-state models for SMT have been previously suggested in the literature
(Vilar et al., 1999; Knight and Al-Onaizan, 1998). In Vilar et al. (1999), a de-
terministic transducer is used to implement an English–Spanish speech translation
system. In Knight and Al-Onaizan (1998), finite-state MT is based on Brown
et al. (1993) and is used for decoding the target-language string. However, no
experimental results are reported using this approach.

Unlike previous approaches, we subdivide the translation task into lexical se-
lection and lexical reordering subproblems. The lexical selection subproblem is
decomposed into phrase-level and sentence-level translation models. We use a tree-
based alignment algorithm (Alshawi et al., 1998a) to obtain a bilingual lexicon.
The phrase-level translation is learned, based on joint entropy reduction of the
source and target languages (Bangalore and Riccardi, 2000). A variable length
n-gram model (VNSA) (Riccardi et al., 1995, 1996) is learned for the sentence-
level translation. The reordering step uses position markers on a tree-structure, but
approximates a tree-transducer using a string-transducer. We explore the impact
of this approximation on translation accuracy and task accuracy in limited domain
applications.

In addition, we have used the resulting finite-state translation method to
implement an English–Japanese speech and text translation system and Japanese–
English and Spanish–English text translation systems. We present evaluation
results for these systems and discuss their limitations. We also evaluate the efficacy
of this translation model in the context of a telecom application such as call routing.

The layout of the paper is as follows. In Section 2 we discuss the mathematical
model of the finite-state translation system. We discuss the algorithms for lexical
selection and phrasal translations in Section 4. The details of our method for lexical
reordering the result of lexical selection is presented in Section 5. In Section 6 we
present the experiments and evaluation results for the various translation systems
on text and speech input and in the context of a call-routing spoken dialog system.
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2. Stochastic Machine Translation

In MT, the objective is to map a source symbol sequence WS = w1, . . . , wNS

(wi ∈ LS) into a target sequence WT = x1, . . . , xNT
(xi ∈ LT ). The SMT approach

is based on the “noisy channel” paradigm (Brown et al., 1993) and the Maximum-
A-Posteriori decoding algorithm. The sequence WS is thought of as a noisy version
of WT and the best guess Ŵ ∗

T is then computed as (1).

Ŵ ∗
T = arg max

WT

P (WT |WS)

= arg max
WT

P (WS |WT )P (WT ) (1)

Brown et al. (1993) propose a method for maximizing P(WT |WS) by estimating
P(WT ) and P(WS |WT ) and solving the problem in equation (1). Our approach to
SMT differs from the model proposed in Brown et al. (1993) in that:

– We compute the joint model P(WS,WT ) from the bilanguage corpus to ac-
count for the direct mapping of the source sentence WS into a target sentence
(ŴT ) that is ordered according to the source language word order (2). The
target string Ŵ ∗

T is then computed as the most likely string based on the target
language model (λT ) from a set of possible reorderings (λŴT

) of the string ŴT

according to (3):

ŴT = arg max
WT

P (WS,WT ) (2)

Ŵ ∗
T = arg max

W̃T ∈λ
ŴT

PλT
(W̃T ) (3)

– We decompose the translation problem into local (phrase-level) (2) and global
(sentence-level) (3) source–target string transduction.

– We automatically learn stochastic automata and transducers to perform the
phrase-level and sentence-level translation.

As shown in Figure 1, the stochastic MT system consists of two subprob-
lems: lexical selection and lexical reordering. In the next sections we describe the
finite-state machine components and the operation cascade that implements this
translation algorithm.

3. Learning Phrase-based Variable n-Gram Translation Models

Our approach to stochastic language modeling is based on the Variable n-gram
Stochastic Automaton (VNSA) representation and learning algorithms introduced
in Riccardi et al. (1995, 1996). A VNSA is a non-deterministic SFSM that allows
for parsing any possible sequence of words drawn from a given vocabulary V. In
its simplest implementation the state q in the VNSA encapsulates the lexical (word
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Figure 1. A block diagram of the stochastic MT system.

sequence) history of a word sequence. Each state recognizes a symbol wi ∈ V∪{ε},
where ε is the empty string. The probability of going from state qi to qj (and
recognizing the symbol associated to qj ) is given by the state transition prob-
ability, P(qj |qi). SFSMs represent in a compact way the probability distribution
over all possible word sequences. The probability of a word sequence W can be
associated to a state sequence ξ

j

W = q1, . . . , qj and to the probability P(ξ
j

W).
For a non-deterministic finite-state machine the probability of W is then given by
P(W) = ∑

j P (ξ
j

W ). Moreover, by appropriately defining the state space to in-
corporate lexical and extra-lexical information, the VNSA formalism can generate
a wide class of probability distributions (i.e., standard word n-gram, class-based,
phrase-based, etc.) (Riccardi et al., 1996, 1997; Riccardi and Bangalore, 1998). In
Figure 2, we plot a fragment of a VNSA trained with word classes and phrases.
State 0 is the initial state and final states are double circled. The ε transition from
state 0 to state 1 carries the membership probability P(C), where the class C con-
tains the two elements {collect, calling card}. The ε transition from state
4 to state 6 is a “back-off” transition to a lower order n-gram probability. State 2
carries the information about the phrase calling card. The state transition func-
tion, the transition probabilities and state space are learned via the self-organizing
algorithms presented in Riccardi et al. (1996).

3.1. EXTENDING VNSAS TO STOCHASTIC TRANSDUCERS

Given the monolingual corpus T , the VNSA learning algorithm provides an auto-
maton that recognizes an input string W (W ∈ VN ) and computes P(W) �= 0
for each W . Learning VNSAs from the bilingual corpus TB leads to the notion of
stochastic transducers τST . Stochastic transducers τST : LS × LT → [0, 1] map the
string WS ∈ LS into WT ∈ LT and assign a probability to the transduction WS

τST→
WT . In our case, the VNSA’s model will estimate P(WS

τST→ WT ) = P(WS,WT )

and the symbol pair wi : xi will be associated to each transducer state q with input
label wi and output label xi . The model τST provides a sentence-level transduction
from WS into WT . The integrated sentence and phrase-level transduction is then
trained directly on the phrase-segmented corpus T p

B described in Section 4.1.

4. Lexical Selection

The first stage in the process of training a lexical selection model is obtaining an
alignment function that given a pair of source- and target-language sentences, maps
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Figure 2. Example of a Variable n-gram Stochastic Automaton (VNSA).

source-language word subsequences into target-language word subsequences. For
this purpose, we use the alignment algorithm described in Alshawi et al. (1998b)
which we briefly present here.

The algorithm takes as input a set of bitexts. We define a bitext to be a source-
language sentence paired with its translation. The algorithm consists of two phases:
acquisition of a translation lexicon and an alignment search. The translation lexicon
specifies a cost for each pairing of source and target word subsequences.3 In the
second phase, an alignment search is performed that given a source and target sen-
tence pair, produces a set of pairings of minimum total cost which maps the source
sentence to its target sentence. This search is carried out in a hierarchical fashion
with recursive decomposition of the source and target strings around a hypothes-
ized “head” word in the source string and its corresponding translation in the target
string. The hierarchical alignment which minimizes the cost function is computed
using a dynamic programming procedure. The result of this alignment procedure is
the mapping among words of the source language and the target language as well
as a dependency tree structure for the source and target language strings. Note that
the dependency tree structure might not correspond to the linguistic dependency
structure of the sentences since the decomposition of the sentence is primarily
driven by the need to minimize swapping of aligned words.

Some example bitexts and the result of the alignment procedure are shown in
Figure 3 and graphically depicted in Figure 4.4 The alignment for the first bitext
reads as: first source word is aligned to the first target word, the second source word
is aligned to the fifth target word, the third source word not aligned with any target
word and so on. The dependency tree structure resulting from the hierarchical de-
composition of the source string and the target string is represented along the third
and the fifth line of Figure 3. Each word position is associated with the word index
of its mother in the tree. The root of the tree is indicated by −1. The dependency
tree structure information is used for lexical reordering as discussed in Section 5.

Note that we use a tree-based alignment unlike the string-based alignment
in IBM statistical models. We believe that a tree-based alignment is more nat-
ural for modeling lexical reordering operations than a string-based alignment. We
are currently investigating the quality of the dictionary produced by a tree-based
alignment compared to a string-based alignment.
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Figure 3. Example bilingual texts with alignment information.

Figure 4. Graphical representation of the information present in the alignment.

From the alignment information in Figure 3, it is straightforward to compile
a bilanguage corpus consisting of source–target symbol pair sequences T =
. . . (wi : xi) . . ., where the source word wi ∈ LS ∪ ε and its aligned word xi ∈
LT ∪ ε (ε is the null symbol). Note that the tokens of a bilanguage could be either
ordered according to the word order of the source language or ordered according
to the word order of the target language. Figure 5 shows an example alignment and
the source-word-ordered bilanguage strings corresponding to the alignment shown
in Figure 3. From the corpus T , we train an SFST which is an extension of the
VNSA (Riccardi et al., 1996).
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Figure 5. Bilanguage strings resulting from alignments shown in Figure 2.

4.1. ACQUIRING PHRASAL TRANSLATIONS

While word-to-word translation is only approximating the lexical selection process,
phrase-to-phrase mapping can greatly improve the translation of collocations, re-
current strings, etc. Moreover, SFSTs can take advantage of the phrasal correlation
to improve the computation of the probability P(WS,WT ) (Bangalore and Ric-
cardi, 2000). In this section, we describe an alternate method that uses the result
of the alignment module as a seed to acquire bilingual phrases of more than two
words length.

As mentioned above, we use the alignment information to construct a bilan-
guage corpus where each token is of the form (wi : xi) (Figure 5). Bilingual phrases
can be derived from the phrases (substrings) of the bilinguage corpus that have high
mutual information score. We acquire bilanguage phrases from the bilanguage cor-
pus by computing weighted mutual information metric of n-grams for arbitrarily
large values of n. We use a suffix array to compute the frequencies of large n-
grams similar to the method presented in Yamamoto and Church (1998). Since the
phrases acquired from a source ordered bilanguage corpus may not have the target-
language words in the order of the target language, we introduce a reordering phase
for the words in a phrase which we call “local reordering”.

For local reordering, we use the local syntactic constraints encoded in an n-
gram target-language model to recover the preferred ordering of the words present
in the phrase to be reordered. There are several methods to achieve this result. One
such method is to represent the words in the phrase to be reordered as a “sausage”
finite-state model as shown in Figure 6. This representation encodes all possible
permutations of the words including strings involving repetitions of words.5 The
sausage finite-state model is composed with the n-gram target language and the
best reordering is recovered according to equation (4),

Locally reordered phrase = min(λs ◦ λLM) (4)

where the locally reordered phrase has the lowest cost among all the phrases con-
tained in λs . The cost is determined by the language model λLM . The result of
reordering the phrases is shown in Figure 7.

The bilanguage corpus is phrase-segmented using the acquired phrases and an
n-gram VNSA-based stochastic transducer model is built using this segmented cor-
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Figure 6. A “sausage” representation for a set of words {W1 . . . Wn}.

Figure 7. Examples of acquired phrases after reordering of Japanese phrases.

pus. The arcs of the resulting transducer associate the words/phrases of the source
language with the words/phrases of the target language. Furthermore, since these
associations are made in the n-gram context in the transducer, they encapsulate
the local contextual information often needed for lexical selection. It would be
interesting to study the influence of longer range contextual information beyond
n-grams (such as those contributed from syntax) on lexical selection which are not
modeled by the lexical selection transducer.

5. Lexical Reordering

The lexical selection model outputs a sequence of target-language words and
phrases for a given source language sentence as shown by the finite-state transducer
in Figure 8. Note that the input transitions of the finite-state transducer encode
the source-language sentence and the output transitions encode the target-language
sentence. In translation among closely related languages such as English–Spanish,
the lexical selection model with local reordering might be sufficient to form a
well-formed target-language sentence. However, for translation between English–
Japanese, the ordering of the target-language words and phrases may not form
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Figure 8. Finite-state transducer representation for lexical selection.

Figure 9. Alignment between English-ordered Japanese and Japanese strings.

a well-formed target-language sentence. We need to apply a lexical reordering
(sentence-level) operation (see equation (3)).

For the lexical reordering operation, the exact approach would be to search
through all possible permutation sequences of words and phrases and select the
most likely sequence. However, that is computationally very expensive. To over-
come this problem, we decompose the sequence of words and phrases into a tree
with each arc labeled with position information of the daughter with respect to its
mother. This tree structure could be interpreted as a dependency tree.

To obtain the dependency tree with reordering information, we reuse the align-
ment algorithm discussed in Section 4 to align the source-ordered target sentence
and the target sentence. Figure 9 shows the English-ordered Japanese string paired
with the Japanese string and the result of aligning these two strings. The result
of the alignment procedure is shown graphically in Figure 10. We transform the
alignment shown in Figure 9 into a corpus (Figure 11) consisting of bracketed
representation of dependency trees. The tokens of this bilanguage corpus are tuples
either of the form wi : wi where wi ∈ LT or the reordering instruction tokens of
the form ε: xi where xi ∈ [, ], +1, −1, +2, −2. The corpus is created by an in-
order traversal of the English-ordered Japanese dependency tree with brackets to
indicate subtrees. Additionally, reordering tokens are inserted in order to indicate
the reordering of the subtrees in the source dependency tree with respect to the
target dependency tree. The reordering tokens provide linear order information
of the children subtrees with respect to its parent node. For example
shitainodesu ‘like’ appears as the second child to the right of its parent sore
o ‘this’ and hence the subtree rooted in shitainodesu is preceeded with
a reordering instruction ε: +2 in Figure 11. We use the resulting corpus to train a
reordering finite-state transducer.

The composition of the reordering finite-state transducer with the result of the
lexical selection model results in strings that are annotated with reordering instruc-
tions. To ensure we obtain well-formed bracketed strings, we compose the result
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Figure 10. Graphical representation of the information present in the alignment for the
English-ordered-Japanese and Japanese sentence.

Figure 11. Bracket representation of a dependency tree with information on reordering words.
Each token consists of the form of a transduction (input:output).

with a transducer that checks for all possible well-formed brackets, for a fixed
number of bracket depth. This can be regarded as a finite-state approximation of a
parathensis context-free grammar up to a bounded depth. The resulting string from
the composition contains reordering instructions which are interpreted to form
the reordered target-language sentence. Other interesting approaches to lexical re-
ordering involve extracting a context-free grammar from the training corpus and
approximating the resulting grammar by a finite-state grammar using techniques
discussed in Pereira and Wright (1997) and Nederhof (2000).

Figure 12 shows the sequence of transductions starting from a source-language
string that results in a target-language string. The intermediate steps involved in-
clude lexical selection, parse of the source-ordered target string, reordered parse
tree for the target string and the final target string Ŵ ∗

T (5),

Ŵ ∗
T = min(WS ◦ λL ◦ λR) (5)

where the source string WS is composed with the lexical selection transducer (λL)
and the lexical reordering transducer (λR). The min function returns the lowest-cost
path in a transducer.
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Figure 12. Sequence of finite-state transductions from English to Japanese.

6. Experiments and Evaluation

In this section, we discuss issues concerning evaluation of the translation system.
The data for the experiments reported in this section were obtained from the
customer side of operator–customer conversations, with the call routing applic-
ation described in Riccardi and Gorin (2000). Each of the customer’s utterance
transcriptions was then manually translated into Japanese and Spanish. A total of
15,457 English–Japanese and English–Spanish sentence pairs was split into 12,204
training sentence pairs and 3,253 test sentence pairs.

6.1. EVALUATION OF MACHINE TRANSLATION SYSTEMS

Evaluation of MT systems has been a subject of discussion for many years
(ALPAC, 1966; Arnold et al., 1993). A universally acceptable, objective and reli-
able metric that can be computed automatically is yet to be found. However, in the
interest of evaluating our translation system automatically and objectively without
human intervention, we report the performance of an MT system both application
independent and in the context of an application.

For the application-independent evaluation, we employ two metrics based on
string-edit distance between the output of a translation system and the reference
translation string: simple accuracy and translation accuracy (Alshawi et al., 1998a).
Simple accuracy is the number of insertion (I = I ′ + I ′′), deletion (D = D′ +D′′)
and substitution (S) errors between the target-language strings in the test corpus
and the strings produced by the translation model. The metric is summarized in
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equation (6). R is the number of tokens in the target string. This metric is similar
to the string-distance metric used for measuring speech recognition accuracy.

Simple Accuracy = (1 − I + D + S

R
) × 100 (6)

The simple accuracy metric, however, penalizes a misplaced token twice, as a
deletion from its expected position and insertion at a different position. We use a
second metric, Translation Accuracy, shown in equation (7), which treats deletion
of a token at one location in the string and the insertion of the same token at another
location in the string as one single movement error (M = I ′ + D′).6 This is in
addition to the remaining insertions, deletions and substitutions.

Translation Accuracy = (1 − M + I ′′ + D′′ + S

R
) × 100 (7)

An alternate evaluation metric has been proposed in recent literature (Papineni
et al., 2002), which relaxes the string comparison metric and is based on the
number of overlapping n-grams between several source translations and the
system-generated translation.

For application-dependent evaluation of a translation system, we employ the
translation system in the context of call type classification. We compare the clas-
sification accuracy using the text produced by the translation system against that
produced using the reference text.

6.2. APPLICATION-INDEPENDENT EVALUATION

Using the training sentence pairs and the procedure described in the earlier
sections, we have developed English–Japanese and Japanese–English translation
systems.

Table I presents the performance results of the English–Japanese translation
system using different translation models, before and after the lexical reordering
stage.

In both tables, the unigram, bigram and trigram translation models do not
include any phrases while uniphrase, biphrase and triphrase models include the
automatically acquired phrases. As can be seen, the performance of models after
reordering is significantly better than the performance before reordering.

6.2.1. Spoken Language Translation

The English–Japanese translation system was used to translate spoken language as
well. The composed lexical selection transducer and lexical reordering transducer
can be directly plugged into a speech recognizer in conjunction with the source-
language acoustic model to produce a source-speech to target-text system.
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Table I. Translation accuracy of the Eng-
lish–Japanese translation system with and
without phrases, before and after reorder-
ing on text.

Trans Accuracy Accuracy

VNSA before after

order reordering reordering

Unigram 23.8 32.2

Bigram 56.9 69.4

Trigram 56.4 69.1

UniPhrase 44.0 46.8

BiPhrase 60.4 69.8

TriPhrase 58.9 66.7

A VNSA-based trigram language model that was trained on the 12,204 training
sentences was used as the language model for the speech recognizer. An off-
the-shelf context-dependent acoustic model for telephone speech was used as the
acoustic model. The word accuracy of the speech recognizer on the test data is
74.3%.7 Table II summarizes the translation accuracies of various models on the
one-best output of the speech recognizer. The translation accuracy of the triphrase-
based translation system on the one-best output of the recognizer is 56.9%. The
decoding network for the speech recognition and translation decoder is computed
as in (8),

λC ◦ λL ◦ λL ◦ λR (8)

where λC and λL are the transducers encoding the acoustic and lexicon models
(Pereira and Riley, 1997; Riccardi et al., 1996).

6.2.2. Lexical Selection Accuracy

Using our approach described in the previous sections, we have trained a unigram,
bigram and trigram VNSA-based Japanese–English translation models with and
without phrases. Table III shows lexical selection accuracy for these different trans-
lation models measured in terms of recall, precision and F -measure. If Ref is the
set of words in the reference translation and Res is the set of words in the translation
output, then the metrics are computed as in (9)–(11).

Recall =
( | Res ∩ Ref |

| Ref |
)

× 100 (9)

Precision =
( | Res ∩ Ref |

| Res |
)

× 100 (10)
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Table II. Translation accuracy of the
English–Japanese translation system with
and without phrases, before and after re-
ordering on one-best output of the speech
recognizer.

Trans Accuracy Accuracy

VNSA before after

order reordering reordering

Unigram 21.4 21.7

Bigram 48.9 55.7

Trigram 49.0 56.8

UniPhrase 39.3 39.6

BiPhrase 51.3 56.5

TriPhrase 50.9 56.9

Table III. Lexical selection accuracy of the Japan-
ese–English translation system with and without
phrases.

Trans Recall Precision F -Measure

VNSA order (R) (P ) 2×P×R
(P+R)

Unigram 31.1 92.2 46.5

Bigram 65.4 89.9 75.8

Trigram 63.2 91.5 74.7

Phr. Unigram 41.9 92.9 57.8

Phr. Bigram 66.7 89.3 76.4

Phr. Trigram 65.3 89.9 75.7

F − measure =
(

2 × Precision × Recall

(Precision + Recall)

)
× 100 (11)

The accuracy of lexical selection plays an important role in classification of
utterances, an application we discuss in the following section.

6.3. APPLICATION-DEPENDENT EVALUATION: CALL ROUTING

The objective of this experiment is to measure the performance of a translation
system in the context of an application, in our case, a call routing application task
called the How May I Help You? (Gorin et al., 1997) task. We briefly review the
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problem and the spoken-language system. The goal is to understand sufficiently
caller’s responses to the open-ended prompt How May I Help You? and route such
a call based on the meaning of the response. Thus we aim at extracting a relatively
small number of semantic actions from the utterances of a very large set of users
who are not trained to the system’s capabilities and limitations.

The first utterance of each transaction has been transcribed and marked with a
call-type by labelers. There are 14 call-types (such as BILLING_CREDIT, CALL-
ING_CARD, AREA_CODE, DIAL_FOR_ME etc.) plus a class OTHER for the
complement class. In particular, we focused our study on the classification of the
caller’s first utterance in these dialogs. The spoken sentences vary widely in dura-
tion, with a distribution distinctively skewed around a mean value of 5.3 seconds
corresponding to 19 words per utterance. Some examples of the first utterances are
given in (12).

(12) a. Yes ma’am where is area code two zero one?

b. I’m tryn’a call and I can’t get it to go through I wondered if you
could try it for me please?

c. Hello

In an automated call router there are two important performance measures.
The first is the probability of false rejection, where a call is falsely rejected or
classified as OTHER. Since such calls would be transferred to a human agent,
this corresponds to a missed opportunity for automation. The second measure
is the probability of correct classification. Errors in this dimension lead to mis-
interpretations that must be resolved by a dialog manager (Abella and Gorin,
1997).

There has been extensive effort in developing this call routing application for
English. The dialog flow and the domain semantics have been carefully crafted for
this application. In order to make this application multilingual, we propose em-
bedding an MT component as a front-end to this application. Figure 13 illustrates
this idea. The translation component would translate non-English user utterances
to English and translate the system’s English utterances into the user’s language.
The goal is to avoid the extensive development effort for building this application
for each new language.

In order to measure the effectiveness of our translation models for this task
we classify Japanese utterances based on their English translations. We trained a
classifier on the training set of English sentences each of which was annotated with
a call type. The classifier searches for phrases that are strongly associated with one
of the call types (Gorin et al., 1997) and in the test phase the classifier extracts
these phrases from the translation output. Figure 14 plots the false rejection rate
against the correct classification rate of the classifier on the English generated by
three different Japanese-to-English translation models for the set of Japanese test
sentences. The figure also shows the performance of the classifier using the correct
English text as input.
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Figure 13. Multilingual-enabling an existing monolingual dialog application.

Figure 14. Plots for the false rejection rate against the correct classification rate of the
classifier on the English generated by three different Japanese-to-English translation models.
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Figure 15. Call routing accuracy on original English text and English text translated from
Spanish with only local reordering and with both local and sentence-level reordering.

There are a few interesting observations to be made concerning Figure 14.
Firstly, the task performance on the text data is asymptotically similar to the task
performance on the translation output. In other words, the system performance is
not significantly affected by the translation process; a Japanese transcription would
most often be associated with the same call type after translation as if the original
were English. We believe that this result is due to the nature of the application
where the classifier is mostly relying on the existence of certain key words and
phrases.

The task performance improved from the unigram-based translation model to
phrase unigram-based translation model corresponding to the improvement in the
lexical selection accuracy in Table III. Also, at higher false rejection rates, the task
performance is better for trigram-based translation model than the phrase trigram-
based translation model since the precision of lexical selection is better than that
of the phrase trigram-based model as shown in Table III. This difference narrows
at lower false rejection rate.

We have also trained a Spanish–English translation model on the Spanish–
English version of the training corpus. We used the translation model to translate
the Spanish version of the same test corpus and evaluated the call routing perform-
ance on the translated English. Figure 15 illustrates the results of this experiment.
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The figure shows the call routing performance curves on the original English text,
on the translated English text and on the English text without lexical reordering
(with only locally reordered phrases). It is interesting to note that the call routing
performance improves due to lexical reordering and at a given false rejection rate
the loss in performance due to translation is only about 2%, when compared to the
performance on the original text.

7. Conclusion

We have presented a mathematical model for speech translation in limited domains
based on SFSTs. We have implemented stochastic finite-state models for English–
Japanese and Japanese–English translation in limited domains. These models have
been trained automatically from source–target utterance pairs. We have evalu-
ated the effectiveness of such a translation model with application-dependent and
application-independent metrics.

Acknowledgements

We would like to thank Richard Cox and Mazin Rahim for their continued sup-
port for the work reported in this paper. We would also like to thank Hiyan
Alshawi, Shona Douglas, Allen Gorin and Mehryar Mohri for valuable discussions
pertaining to this work.

Notes
1 Our approach is embodied in a system called Anuvaad
(http://www.research.att.com/∼srini/Anuvaad.html)
2 Furthermore, software implementing the finite-state calculus is available for research purposes.
3 We consider source and target word alignment subsequences of 1–1, 2–1, 1–2, 1–0 and 0–1 words.
4 The Japanese string was translated and segmented so that a token boundary in Japanese
corresponds to a token boundary in English as selected by human translators.
5 An exact permutation finite-state model might also be constructed since the numbers of words in
the phrases to be reordered are fairly small.
6 Note that the movement errors are derived after the strings are compared using insertion, deletion
and substitution operations.
7 The state-of-the-art speech recognition performance on conversation speech such as Switchboard
data is about 75% word accuracy.
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