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Abstract

This paper addresses the problem of automatic numeric recognition and understanding in spoken language dialogue.

We show that accurate numeric understanding in ¯uent unconstrained speech demands maintaining robustness at

several di�erent levels of system design, including acoustic, language, understanding and dialogue. We describe a robust

system for numeric recognition and present algorithms for feature extraction, acoustic and language modeling, dis-

criminative training, utterance veri®cation and numeric understanding and validation. Experimental results from a

®eld-trial of a spoken dialogue system are presented that include customers' responses to credit card and telephone

number requests. Ó 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Interactive spoken dialogue systems can play a
signi®cant role in automating a variety of services
including customer care and information access
(Lamel et al., 1999; Rahim et al., 1999; Riccardi
and Gorin, 1999; Ramaswamy et al., 1999; Os
et al., 1999). The success of these systems depends
largely on their ability to accurately recognize and
understand ¯uent unconstrained speech. The
premise is that users would be able to engage with
these systems in a natural open dialogue with
minimal human assistance.

In this paper, we describe a class of applications
for spoken dialogue systems that involve the use of
a numeric language. This language includes a set of
phrases that form the basis for recognizing and

understanding credit card and telephone numbers,
zip codes, social security numbers, etc. This lan-
guage forms an integral part of a ®eld-trial study of
AT&T customers responding to the open-ended
prompt ``How May I Help You?''. It consists of
several distinct phrase classes such as digits, natural
numbers, alphabets, restarts, city/country name and
other miscellaneous phrases. The numeric language
can be considered as a set of ``salient'' phrases that
are relevant to the task of number recognition and
which may be identi®ed by exploiting the mapping
from unconstrained language into machine action
(Gorin, 1995; Wright et al., 1997, 1998).

An essential ingredient for facilitating natural
interaction in spoken dialogue systems is main-
taining system robustness. Although it is com-
monly considered as a mismatch problem between
the acoustic model and the test data (Sankar and
Lee, 1996; Rahim and Juang, 1996), robustness in
spoken dialogue systems extends to several other
dimensions:
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· Robust acoustic modeling. Variations in the
acoustic characteristics of the signal due to
extraneous conditions (such as background
noise, reverberation, channel distortion, etc.)
should cause little or no degradation in the
performance of the recognizer.

· Robust language modeling. Users should be able
to express themselves naturally and freely
without being constrained by a highly structured
language model.

· Robust language understanding. The presence of
dis¯uencies (such as ``ah'', ``mm'', etc.) and
recognition errors should have no or little
impact on the behavior of the system.

· Robust dialogue strategy. The dialogue manager
should guide both novice and skilled users
through the application seamlessly and intelli-
gently.

Maintaining robustness at these various levels is
the key to the success of spoken dialogue systems
in the telecommunication environment.

In this paper, we consider the problem of
numeric language recognition in spoken dialogue
systems as a large-vocabulary continuous speech
recognition task (Rahim, 1999a). We address
the technical challenges in developing a robust,
accurate and real-time recognition system. We
present algorithms for improved robustness at
the acoustic, language and understanding levels
of the system. We demonstrate that our system
for numeric recognition provides robustness to a
wide variety of inputs and environmental condi-
tions.

The organization of this paper is as follows.
Section 2 describes the challenges involved when
dealing with ¯uent unconstrained speech, and
provides evidence that demonstrates the need for
utilizing a numeric language as opposed to merely
digits. Section 3 provides a characterization of our
experimental database for numeric recognition. In
Section 4, we describe the various modules of the
proposed system, including feature extraction,
acoustic modeling and training, language model-
ing, utterance veri®cation and numeric under-
standing and validation. The performance of these
various modules are presented in the experimental
results of Section 5. Finally, a summary and a
discussion are provided in Section 6.

2. From digits to numeric recognition

Connected digits play a vital role in many ap-
plications of speech recognition over the tele-
phone. Digits are the basis for credit card and
account number validation, phone dialing, menu
navigation, etc.

Progress in connected digits recognition has
been remarkable over the past decade (Cardin
et al., 1993; Buhrke et al., 1994). Fig. 1 summarizes
the performance of state-of-the-art digit recogniz-
ers on a variety of databases that range from high-
quality read speech to conversational spontaneous
speech (Chou et al., 1995; Buhrke et al., 1994).
These results re¯ect the digit error rate when using
a free digit grammar and with no rejection. 1 Un-
der carefully-monitored laboratory conditions,
such as the Texas Instrument (TI) database, it is
shown that recognizers can generally achieve less
than 0.3% digit error rate (Cardin et al., 1993) (see
Fig. 1 ± ``READ''). Dealing with telephone speech
adds new di�culties to this problem. Variations in
the spectral characteristics due to di�erent channel
conditions, speaker populations, background
noise and transducer equipment can cause a sig-
ni®cant degradation in recognition performance.
Nevertheless, through advances in acoustic mod-
eling, discriminative training and robustness,
many recognition systems today can operate at
1±2% digit error rate (Chou et al., 1995; Rahim
et al., 1996). This is illustrated in Fig. 1 (``FLU-
ENT'') for a variety of in-house databases that
have been collected over the telephone, including
Teletravel (TELE), Voice Card (VC), Universal
Card Service (UCS), Mall'88 (ML88), Mall'91
(ML91) and Voice Recognition Call Processing
(VRCP) (Buhrke et al., 1994; Chou et al., 1995).

Using a spoken dialogue system imposes a new
set of challenges to the problem of recognizing
digits embedded in natural spoken input. As
opposed to using a system-initiative strategy, as it
is the case for the databases reported under
``READ'' and ``FLUENT'', having a mixed-ini-
tiative dialogue implies less language constraints

1 The digit error rate includes the insertion, deletion and

substitution error rates normalized by the total digit count.
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and more ¯exibility for users to speak openly
(Chu-Carroll, 1999). Although this is clearly
advantageous for building systems that facilitate
natural human±machine communication, it can
have negative impact on the performance of the
recognizer. This is precisely the scenario that we
are examining in this study in which during the
course of the dialogue, users are asked a variety
of questions among which ``What number would
you like to call?'', ``May I have your card number
please?'', ``What was that number again?'', etc.
The di�culty here is not only to deal with ¯uent
unconstrained speech, but to be able to design
systems that can accurately recognize an entire
string of numbers that may be encoded by digits,
natural numbers and/or alphabets. In addition,
these systems must be robust towards out-of-vo-
cabulary words, hesitation, false-start and various
other acoustic and language variabilities. Em-
ploying systems that accurately recognize merely
digits in a spoken dialogue environment could
lead to poor performances as illustrated in Fig. 1
(``CONVERSATIONAL'') for the two ``How
May I Help You?'' (HMIHY-I, HMIHY-II) data
collections. 2

3. Experimental study using a spoken dialogue

system

We are interested in the problem of under-
standing ¯uent speech within constrained task
domains. In particular, we have conducted a
number of ®eld trial studies on AT&T customers
responding to the open-ended prompt ``How May
I Help You?'' with the aim at providing an auto-
mated customer service. The goal of this service is
to recognize and understand customers' requests
whether they relate to billing, credit, call automa-
tion, etc. (Gorin et al., 1997; Riccardi and Gorin,
1999). Dialogue in this application is clearly nec-
essary since in many situations involving ambigu-
ous requests or poor system robustness, customer
service can not be performed merely from a single
input.

3.1. Database for numeric recognition

This paper will focus on speci®c parts of the
dialogue where customers are prompted to say a
credit card or a telephone number to obtain call
automation or billing credit. Various types of
prompts have been studied with the objective to
stimulate maximally consistent and informative
responses from large populations of users (Boyce
and Gorin, 1996). These prompts are engineered
towards asking users to say or repeat their number
string without imposing rigid speaking format.
Our experimental database included over 30,000
transactions with 2178 utterances representing re-
sponses to card and phone number queries, rang-
ing from 1 to 45 words in length (referred to as the
numeric database) (Riccardi and Gorin, 1999).

To calibrate the di�culty of this task, we
subdivided the database based on two sets of
results. The ®rst, which is displayed in Fig. 2 in the
form of pie charts, is a partitioning of the data
according to three categories: (a) numerics phrases
only (such as digits, natural numbers and alpha-
bets) (b) embedded numerics, which include those
numeric phrases that have been spoken among
other vocabulary words, and (c) no numerics,
which include utterances not containing any
numeric phrases. The pie charts indicate that the
distribution of users' responses based on spoken
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2 HMIHY-I and HMIHY-II are customer care recordings

that were collected in two separate sessions.
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numeric expressions is di�erent for the card and
phone number prompts. Furthermore, a large
proportion of users do not respond with numeric
phrases alone. In the case of the phone number
prompt, 43% of the utterances contained embed-
ded numeric and 9% included no numerics.

An alternative method for calibrating the di�-
culty of this task is illustrated in Fig. 3 which
shows the classi®cation of utterances as a function
of their vocabulary contents and call characteris-
tics (i.e, quality). Ten di�erent classes are pre-
sented. They include digits only (``Digits'' such as
``one'', ``two'', . . . , ``nine'', ``oh'', ``zero''); em-
bedded digits (``eDigits'' ± digits spoken among
other vocabulary words); natural numbers
(``nNumbers'' such as ``hundred'', ``eleven'' etc.);

alphabets (``Alphas'' such as ``A'', ``H'', etc.); re-
starts (``Restart'' ± false starts, hesitations and
corrections); accent (``Accent'' ± distinct regional
dialect and strong foreign accent that contribute to
mispronunciation of some words); fast speech
(``Fast'' ± over 1.5 times faster than the average
speech rate); noise (``Noise'' ± background speech,
music and noise with signal-to-noise ratio below
15 dB); out-of-vocabulary (``Garbage'' ± extrane-
ous and uninformative speech); cuts (``Cuts'' ±
utterances with words that are partially spoken).

The statistics on this database are signi®cantly
di�erent than most of the databases that we have
previously encountered. Nearly half of the utter-
ances include only digits as opposed to almost
100% for the databases reported by Chou et al.
(1995). The new challenge this database presents is
the need to accurately recognize embedded digits,
natural numbers, alphabets, restarts and extrane-
ous speech which collectively constitute about half
of the database. There are also high proportions of
fast speech, cuts and severe background noise
which must all be dealt with appropriately.

3.2. The numeric language

It is not necessary for a spoken dialogue system
to recognize all words correctly in order to un-
derstand the meaning of the request, but only
those words or phrases that are ``salient'' to the
task (Gorin, 1995; Wright et al., 1997, 1998). Sa-
lient phrases are essential for interpreting ¯uent
speech. They may be automatically acquired such
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that to maximize the accuracy of the mapping
from unconstrained input to machine action
(Wright et al., 1997).

In this paper, we will refer to those salient
phrases that are relevant to our task as numerics.
The numeric language consists of the set of phrases
that are relevant to the task of understanding and
interpreting customers' requests. For this applica-
tion, we de®ne six distinct phrase classes including
digits, natural numbers, alphabets (Mitchell and
Setlur, 1999), restarts, city/country name, and other
miscellaneous phrases. Digits, natural numbers and
alphabets are the basic building blocks of tele-
phone and credit card numbers. For example, ``my
card number is one three hundred ®fty ®ve A
four. . .''. Restarts include the set of phrases that
are indicative of false-starts, corrections and hesi-
tation. For example, ``my telephone number is nine
zero eight I'm sorry nine seven eight. . .''. City/
country names can be essential in reconstructing a
telephone number when country or area codes are
missing. For example, ``I would like to call Italy
and the number is three ®ve. . .''. Finally, there are a
number of miscellaneous salient phrases that can
alter the ordering of the numbers. Such phrases are
``area code'', ``extension number'', ``expiration
date'', etc. In our application, the vocabulary size
was over 3600 words of which 100 phrases repre-
sented the numeric language.

4. System for numeric recognition

We consider the problem of numeric recogni-
tion in spoken dialogue systems as a large-vocab-

ulary continuous speech recognition task where
numerics are treated as a small subset of the active
vocabulary in the lexicon. 3 The challenge here is
essentially to accurately model, recognize and un-
derstand the numeric language in ¯uent uncon-
strained speech. Fig. 4 shows a block diagram of
the numeric recognition system. The main com-
ponents of this architecture are described as fol-
lows.

4.1. Feature extraction

The input signal, sampled at 8 kHz, is ®rst pre-
emphasized and grouped into frames of 30 ms
durations at every interval of 10 ms. Each frame is
Hamming windowed, Fourier transformed and
then passed through a set of 22 triangular band-
pass ®lters. Twelve mel cepstral coe�cients are
computed by applying the inverse discrete cosine
transform on the log magnitude spectrum. To re-
duce channel variations while still maintaining
real-time performance, each cepstral vector is
normalized using cepstral mean subtraction with
an operating look-ahead delay of 30 speech
frames. To capture temporal information in the
signal, each normalized cepstral vector along with
its frame log energy are augmented with their ®rst
and second-order time derivatives. The energy
coe�cient, normalized at the operating look-ahead
delay, is also applied for end-pointing the speech
signal (Rabiner and Juang, 1993).
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Fig. 4. A block diagram of the numeric recognition system.

3 Our previous experiments have shown that this approach to

numeric recognition can lead to improved system performance

over keyword detection methods (Rahim, 1999a).

M. Rahim et al. / Speech Communication 34 (2001) 195±212 199



4.2. Acoustic modeling

Accurate numeric recognition in ¯uent uncon-
strained speech clearly demands detailed acoustic
modeling of the numeric language. It is also es-
sential to accurately model non-numeric words as
they constituted over 11% of the numeric dat-
abase. Accordingly, our design strategy has been
to use two sets of subword units; one dedicated for
the numeric language and the other for the
remaining vocabulary words. Each set adopts
left-to-right continuous-density hidden Markov
models (HMMs) with no skip states.

For numeric recognition, context-dependent
acoustic units have been used which captured all
possible inter-numeric coarticulation (Pieraccini
and Rosenberg, 1990; Lee et al., 1992). The basic
philosophy is that each word is modeled by three
segments; a head, a body and a tail. A word would
have one body, that has relatively stable acoustic
characteristics, and multiple heads and tails de-
pending on the preceding and following context.
Thus junctures between numerics are explicitly
modeled. Since this results in a huge number of
subword units, and due to the limited amount of
training data, the head-body-tail design has been
strictly applied for the eleven digits. This generated
273 units which were assigned a 3-4-3 state to-
pology corresponding to the heads, bodies and
tails, respectively (Pieraccini and Rosenberg, 1990;
Lee et al., 1992).

The second set of units were used for modeling
non-numeric words and consisted of forty 3-state
HMMs, each corresponding to a context-inde-
pendent English phone (Shoup, 1980). Therefore,
in contrast to traditional methods for digit
recognition, out-of-vocabulary words ± essentially
the non-numeric words, are explicitly modeled by
a dedicated set of subword units, rather than
being treated as ``®ller'' phrases. Transitional
events between these units and the digit HMMs
(limited by the availability of the data) were
modeled by 16 additional units representing
context switching from digits to speech events
and vica versa. As will be shown later, this
approach enables us to take full advantage of the
language model for this task while maintaining
real-time operation.

To model silence, background noise and
extraneous events, four ®ller models were intro-
duced. Each model was represented by either a
1-state or a 3-state HMM. They were trained on
pre-segmented data that included silence, coughs,
clicks, extraneous sounds and background speech.

In total, our system employed 333 units. Each
state included 32 Gaussian components with the
exception of the ®ller models which consisted of 64
Gaussian components. A unit duration model,
approximated by a gamma distribution, was also
used to increment the log likelihood scores
(Rabiner and Juang, 1993).

4.3. Language modeling

Robustness is a key ingredient in building lan-
guage models for spoken dialogue systems. The
challenge is being able to construct models that
can recognize ¯uent spontaneous speech, enabling
users the ¯exibility to speak freely. Though the
numeric language has quite a small vocabulary of
very frequent words, the diverse and unpredictable
set of responses make this task a challenge for
language modeling. Thus traditional methods that
rely on hand-crafted and deterministic grammars
are generally inferior in these circumstances
(Rahim, 1999a). On the other hand, training sto-
chastic language models on transcriptions of re-
sponses to number requests is prone to data
sparseness problems.

In this study, we automatically learn stochastic
®nite state machines from the training data using a
variable n-gram model (Riccardi et al., 1996). This
particular design includes back-o� mechanism and
enables parsing of any arbitrary sequence of words
sampled from a given vocabulary. It has been
previously shown to be more e�cient than stan-
dard n-gram language models (Riccardi et al.,
1996).

To improve the generalization capability of
the language model, we have integrated se-
mantic-syntactic knowledge into the estimate of
the word sequence probabilities. In particular, by
manually tagging the numeric language into word
and phrase classes (e.g., hdigitsi � fONE;TWO;
. . .g, hnaturalsi � fELEVEN; HUNDRED; . . .},
hcountryi � fITALY; ENGLAND; . . .g), we are
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e�ectively and robustly integrating prior knowl-
edge into the language model. This has the bene®t
of producing probability estimates that are more
robust against data sparseness, and language
models that are both e�cient in terms of storage
and generalizable across di�erent task domains
(Riccardi et al., 1996).

Automatic learning of salient grammar frag-
ments, such as classes of data, is essential for ro-
bust language modeling. Algorithms for automatic
acquisition of phrase grammars through word and
phrase classes have been proposed in (Riccardi
and Bangalore, 1998). An excerpt of salient
phrases that have been automatically generated
from these algorithms are the following:

hdig3i area code,
number is hdig10i,
hcountryi hdig14i,

where hdig3i; hdig10i and hdig14i are non-terminal
symbols for di�erent sequences of digits.

Incorporating language features as a constraint
on the probability distribution estimation helps in
improving the prediction of words over standard
n-gram language models. For example the uni-
gram model for the phrase hdig3iarea code is
estimated from the following set of constraints on
the word probability distribution:

Prh�hdig3iarea code� � h1p̂4 � h2p̂1p̂2p̂3;

Pr�area� � p̂1;

Pr�code� � p̂2;

Pr�hdig3i� � p̂3;

Pr�hdig3iarea code� � p̂4;

�1�

where p̂i are the priors and H � fhig are the free
parameters which may be estimated through
either the expectation-maximization algorithm or
the cross-validation algorithm (Riccardi et al.,
1996).

4.4. Model training

Training acoustic and language models for
numeric recognition in a spoken language dia-
logue poses several new challenges. First, the
training objective function should be coupled
with the performance of the recognizer. For

numeric recognition, an optimum recognizer is
de®ned to be the one that minimizes the expected
numeric string error rate. This performance
measure is essential for speech understanding
purposes since a numeric string would be con-
sidered erroneous if and only if any one of the
numerics is recognized incorrectly. A misrecog-
nition of a single digit, for example, would clearly
result in an incorrect automation of a credit card
or a telephone number.

The second challenge is to design a framework
that provides ``¯exible'' interaction between the
acoustic and language models. Though one needs
to maximize the recognition performance in a
task-speci®c domain, ¯exibility must be provided
to enable acoustic model training to be performed
relatively freely of the constraints imposed by the
stochastic language model.

Training is carried out in two phases using all
the available training corpus, X ; Maximum likeli-
hood estimation (MLE) is performed followed by
minimum classi®cation error (MCE) training
(Juang and Katagiri, 1992). Given a set of lan-
guage model parameters, H, the objective in MLE
training is to learn a new set of acoustic model
parameters, K̂, through maximizing a log likeli-
hood function. Given the correct word transcrip-
tion, W0, then

K̂ � arg max
K

g�X ;W0; K;H�; �2�

where

g�X ;W0; K;H� � log Pr�X jW0;K� � Pr�W0jH�c� �
�3�

and cP 0 de®nes a compensation factor which is
set empirically to weight the contribution of the
stochastic language model.

In MCE training, we aim to re-estimate both K̂
and Ĥ by minimizing a smoothed string-based
error function:

�K̂; Ĥ� � arg min
K;H
f1� eÿad�X ;K;H�gÿ1

; a > 0; �4�

where d�X ; K;H�, the misclassi®cation distance, is
de®ned as
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d�X ; K;H� � ÿg�X ;W0; K;H�

� log
1

N

XN

n�1

eg�X ;Wn;K;H�
( )

: �5�

Wn are considered as competing hypotheses and
can be generated by an N -best search. 4

Training and acoustic modeling are performed
iteratively. Two sets of context-independent sub-
word units are initially optimized using MLE fol-
lowed by MCE. Context-dependent HMMs are
then designed for the numeric language and
trained accordingly. In the ®nal step, additional
units are integrated to model transitional events
between numerics and non-numerics, and training
is repeated again. The resultant acoustic model
consisted of 333 discriminatively-trained HMMs.

Few remarks are in place for MCE training:
1. Discriminative training is relatively fast. With

an e�cient implementation of MCE along with
fast N -best search, models have been trained at
about real-time.

2. The objective function in Eq. (4) minimizes the
expected string error rate over the training data.
We have observed that assigning a dedicated set
of context-dependent units for modeling num-
erics and another for modeling other words,
as opposed to a single set of units for all vocab-
ulary words, results in a lower error rate over
both the training and test data.

3. The out-of-vocabulary words, which amount to
1% of our training database, were used for im-
proving the discrimination between numerics
and the ®ller models. This e�ectively reduces
both the insertion and deletion rates of the nu-
meric language.

4. The factor c in Eq. (3) played a key role during
discriminative training in providing ¯exible in-
teraction between the acoustic and language
models. The higher the value of c, the more em-
phasis was given to the language model. There-
fore, setting c to be reasonably low during
training provided the acoustic models the free-

dom to be optimized with less language con-
straints. 5

4.5. Utterance veri®cation

An important charter of a robust spoken dia-
logue system is identifying out-of-vocabulary ut-
terances and utterances that are incorrectly
recognized. This is particularly important for nu-
meric recognition since it provides the dialogue
manager with a con®dence measure that may be
used for call con®rmation, repair or disambigua-
tion. Associating each utterance with a con®dence
score is performed through utterance veri®cation
(Lleida and Rose, 1995; Rahim et al., 1997;
Wendemuth et al., 1999). In this section, we will
describe utterance veri®cation as a statistical
hypothesis testing problem. We will then describe
our methods for extracting veri®cation features
and performing classi®cation.

4.5.1. Statistical hypothesis testing
Consider Z � fZ1; Z2; . . . ; Zng to be n veri®ca-

tion features that describe a single utterance hav-
ing M words, fwiji � 1 : Mg. In statistical
hypothesis testing, if H0 is the null hypothesis and
H1 is the alternate hypothesis, then the decision
rule is stated in terms of a likelihood ratio as

L�Z;H� � Prh0
�ZjH0�

Prh1
�ZjH1�?

H0

H1

s; �6�

where s is the decision threshold and H � fh0; h1g
are the parameters of the model which are esti-
mated by minimizing the average probability of
error Prh1

�Z;H0� � Prh0
�Z;H1� (Bickel and Dok-

sum, 1977). If Sn denotes the numeric language
set, then H0 assumes that wi 2Sn, for at least one
word, and that all numeric words are correctly
recognized. Conversely, H1 assumes that either
wi 62Sn 8i, or at least one of the numeric words is
incorrectly recognized.

In this study, we consider utterance veri®cation
as a binary classi®cation problem where for each

4 In this study, MCE has been limited to training the acoustic

model parameters only.

5 In this study, c was set to 7 during training and 9 during

recognition thus causing the N -best search during the training

process to be more dominated by the acoustic likelihood score.
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utterance, the most probable hypothesis is selected
as

H � � arg max
i�0;1

Pr
/
�HijZ�: �7�

4.5.2. Veri®cation features
Veri®cation features, Z, are designed to re¯ect

the con®dence in recognizing essentially the nu-
meric language. Five features are used to encode
each utterance. Pilot experiments have shown that
each of these features has the capability of pro-
viding some degree of separation between H0 and
H1. This is evident since the equal error rate is
signi®cantly better than chance level when em-
ploying any of the veri®cation features individu-
ally (Rahim et al., 1997).

Veri®cation score. To detect out-of-vocabulary
words and numerics that are incorrectly recog-
nized, a log likelihood ratio distance is computed
based on a set of discriminatively-trained context-
independent veri®cation HMMs, W, involving
numeric phrases, W�k�, anti-numeric phrases, W�ak�,
and ®llers, W�f � (Rahim et al., 1997). Let X be the
acoustic features for a given utterance (e.g., cep-
strum, energy, etc.), fwkjk � 1 : Kg its numeric
words, such that wk 2Sn 8k, and Xk the corre-
sponding acoustic vectors, then the veri®cation
score is de®ned as

L�X ;W� � 1

g
log

1

K

X
k

expf
(

ÿ gL�Xk;W�g
)
;

L�Xk;W�

� log
Pr�XkjW�k��

a Pr�XkjW�ak�� � �1ÿ a�Pr�XkjW�f ��

( )
;

�8�
where g > 0:0 and 06 a6 1. This measure has
been commonly used in (Lleida and Rose, 1995;
Rahim et al., 1997).

N-best veri®cation score. This score re¯ects the
con®dence in L�X ;W�, estimated over the N -best
candidates:

dL�X ;W� � L1�X ;W� ÿ L2�X ;W�; �9�
where L1��� and L2��� are the veri®cation scores for
the best two candidates.

Likelihood-ratio distance. The ratio of the
N -best likelihood scores for the recognition
HMMs, K, provides a con®dence measure that can
describe the best decoded path.

dL�X ;K� � L1�X ;K� ÿ L2�X ;K�;
L�X ;K� � 1

K

X
k

log Pr�Xk;wkjK�f g; �10�

where L1��� and L2��� are the likelihood scores for
the two best candidates.

Numeric cost function 1. Confusions among the
numeric language for the top N -best candidates is
a strong indication of a possible error. Thus for
wk 2 Sn,

D1 � 1 w1
k � w2

k 8k;
0 otherwise;

�
where w1

k and w2
k are the numeric words for the two

best candidates.
Numeric cost function 2. Since for some utter-

ances the numeric language can be the only
vocabulary in the N -best candidates, D1 will
erroneously be set to 0 in these situations. A
companion cost is therefore introduced, such that

D2 � 1 w1
k 2Sn 8k;

0 otherwise:

�

4.5.3. Hierarchical mixture-of-experts
The action of the classi®er is to map the input

feature space into H0 should the top hypothesis
contain numeric words that are all correctly rec-
ognized, and H1 otherwise. A hierarchical mixture-
of-experts (HME) has been used for this binary
classi®cation problem (Jordan and Jacobs, 1994).
Unlike neural networks, HMEs apply the expec-
tation-maximization algorithm for training as
opposed to gradient descent. HMEs are also dis-
criminative, thus unlike Gaussian mixture models
(GMM) that maximize a likelihood function,
HMEs minimize the probability of error. They
generally converge reasonably fast accepting both
binary and continuous inputs.

Fig. 5 shows an HME of depth 2. This archi-
tecture enables non-linear supervised learning by
dividing the input feature space into a nested set of
regions and ®tting simple surfaces to the data that
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fall in these regions. The output of the HME, y, is
a discrete random variable having possible out-
comes of 1, to denote H0, or 0 to denote H1.

An HME is a binary tree having gating net-
works that sit at the nonterminals of the tree and
expert networks that sit at the leaves of the tree.
Both gating and expert networks receive the veri-
®cation features Z and compute a conditional
probability. For binary classi®cation, the resulting
hierarchical probability model is a mixture of
Bernoulli densities (Jordan and Jacobs, 1994).

Pr
/
�yjZ� �

X
i

Fi�Z;/i�
X

j

Fij�Z;/ij�

� Pr
/ij

�yjZ�y�1ÿ Pr
/ij

�yjZ���1ÿy�
: �11�

Thus, the probability of selecting H0 is

Pr
/
�y � 1jZ�

�
X
i�0;1

Fi�Z;/i�
X

j

Fij�Z;/ij�Pr
/ij

�yjZ�; �12�

where / are the underlying parameters of the
HME. The output of the HME may be considered
as a con®dence score. Based on the application
design requirements, this output can be adjusted
so that to achieve a desirable trade-o� between
false acceptance and false rejection rates. 6

4.6. Numeric understanding

Speech, or language, understanding is an es-
sential component in the design of spoken dia-
logue systems. It provides a link between the
speech recognizer and the dialogue manager (see
Fig. 4) with the prime responsibility of converting
the recognition output into a machine action. 7

For numeric recognition, the purpose of the
understanding module is to translate the output of
the recognizer into a ``valid'' string of digits.
However, in the event of an ambiguous request or
poor recognition performance, the understanding
module may provide several hypotheses to the di-
alogue manager for repair, disambiguation or
clari®cation (Abella and Gorin, 1997).

In this study, a knowledge-based strategy has
been implemented for numeric understanding to
translate the recognition results (e.g., N -best hy-
potheses) into a simpli®ed ®nite state machine
(FSM) containing digits only. Six semantic classes
for numeric understanding are illustrated in
Table 1. A simpli®ed example is shown in Fig. 6
which illustrates the basic actions of the under-
standing module when dealing with alphabets,
natural numbers, restarts or corrections, and ®l-
tering of out-of-vocabulary phrases. It should be
pointed out that the knowledge-based system is
very much suited for our task given its scope and
complexity. However, if su�ciently more data had
been available, it would have been interesting to
explore machine learning methods for this problem.

One variation of the understanding module is to
process N -best hypotheses (or a lattice). This
provides the dialogue system with much ¯exibility
as to what the appropriate action to take especially
if the top hypothesis is not a valid string as will be
illustrated in the next section.

4.6.1. String validation
Speech recognition systems employ language

modeling for encoding knowledge of the task. This
is advantageous from both accuracy and e�ciency
standpoints. In this study class based language
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F
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21

1
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 Gating
Network

 Gating
Network

 Gating
Network

 Expert
Network

 Expert
Network

 Expert
Network

 Expert
Network

Fig. 5. A hierarchical mixture-of-experts (after Jordan and

Jacobs, 1994).

6 From a business point of view, threshold settings are directly

related to call automation rate and hence cost revenue. The

higher the threshold, the smaller is the automation rate but the

less are the errors (false acceptance) made by the system, and

vica versa.

7 For our particular task domain, we will refer to speech

understanding as numeric understanding.
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models were used to integrate semantic-syntactic
knowledge into the estimate of the word sequence
probabilities. However, no constraints within the
numeric classes were imposed, that is, users had
the ¯exibility to speak the numeric language in any
ordering manner. For example users can say a card
number intermixing alphabets, digits and natural
numbers. In these situations the system would rely
more strongly on the acoustic scores during
decoding.

The motivation for this design strategy was
that users who commonly have no previous
experience of the system would unlikely follow
any language structure. This is clearly a challenge
when dealing with a mixed-initiative dialogue, as
opposed to a system-initiative dialogue. We
observed many instances where the user decided
either to change context, not to provide a com-
plete telephone or credit card number, or wished
not to provide any information and requested an
operator. These varieties of problems are real and
very much expected from a mixed-initiative dia-
logue system that deals with novice users. In the

test database that was used in this study, we
found nearly 24% of the calls to ®t into this
category, prohibiting full automation of the call
accordingly.

It is essential that these problematic situations
are identi®ed and reported to the dialogue man-
ager. In this study, the output of the understand-
ing system is passed through a validation module.
This module performs a database query which
accesses live databases of credit cards and tele-
phone numbers, reporting three possible out-
comes:
1. Valid. The output digit string of the under-

standing system corresponds to an actual valid
number (telephone or credit).

2. Invalid. The output digit string does not corre-
spond to a valid number.

3. Partially valid. The output digit string is invalid
but at most one digit may be corrected to en-
sure validity of the string.

This information is then passed to the dialogue
manager for either con®rmation, disambiguation
or clari®cation.

three
four four

A
Sorry one hundred

I

nine E

D

two

number

my

card six

3464
3

9
2

1 0 0

(b)

(a)

Fig. 6. An example of an FSM: (a) before and (b) after numeric understanding.

Table 1

Semantic classes for numeric understanding

Class Action Example

Digits Translation Six seven eight ! 6 7 8

Naturals Translation One eight hundred two one three ! 1 8 0 0 2 1 3

Restarts Correction Nine zero eight sorry nine one eight ! 9 1 8

Alphabets Translation A Z one two three ! 2 9 1 2 3

City/country Translation Calling Florham Park New Jersey ! 9 7 3

Numeric phrases Realignment Nine one two area code nine zero one !9 0 1 9 1 2

Out-of-vocabulary Filtering I do not know what you are talking about ! /
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Since a database of numbers can be represented
by an FSM, it can be e�ciently combined with the
understanding FSM in Section 4.6. In this manner,
N -best hypotheses may also be processed and
passed to the dialogue manager. Hence, under-
standing and validation can be conducted simul-
taneously.

Performing validation on the output of the
understanding module is essential in spoken lan-
guage dialogue. There are many situations where
this can be advantageous. A speaker may provide
an invalid area code, for example, or a valid tele-
phone number that was either incorrectly recog-
nized or misinterpreted by the system. Clearly
doing a checking step prior to automation is
necessary.

Finally, it should be pointed out that this pro-
cess of validation after recognition is di�erent than
traditional approaches that constrain the recogni-
tion process by means of a number grammar. This
latter approach is unsuitable in spoken language
dialogue where errors can be made by either the
speaker or the machine.

5. Experimental results

This section provides experimental results
demonstrating the performance of the various
modules of our system, including recognition,
understanding, veri®cation and validation. All
experiments have been performed using AT&T
Watson speech recognition system (Sharp et al.,
1997). A standard Viterbi beam search has been
used with a lexicon of 3.6 K words, perplexity 14
and out-of-vocabulary word rate of less than 5%
as measured on the test database (Riccardi and
Gorin, 1999).

A variety of databases have been used for
training the subword/numeric models. These da-
tabases, collected over a wide range of environ-
mental conditions, help to provide broad acoustic
models. They include (a) 12,000 utterances from
this experimental study (of the total 30,000 utter-
ances) with over 1500 utterances from users re-
sponding to a card or a telephone number prompt
(Gorin et al., 1997), (b) 11,500 connected digits
strings from services and data trials performed

over a 10 year period (Chou et al., 1995), (c) 3300
connected digits strings, from various cellular en-
vironments (acquired from BRITE systems), (d)
an in-house database including 5000 strings of
connected digits and natural numbers.

For language modeling, a variable n-gram sto-
chastic automata was estimated using the 30,000
transactions. Two separate language models were
then generated for the card and phone numbers
by adapting on their respective transcriptions
(Riccardi and Gorin, 1999).

Our experiments have been conducted on 626
test utterances, each representing a separate
transaction from a di�erent speaker. The ®rst set
of results are presented in Fig. 7. They illustrate
the performance of the recognizer for two di�erent
acoustic models. The ®rst model, represented by
the dashed line, consists of two sets of MLE-
trained context-independent HMMs. This model
was used in the initial stage of the training process
as pointed out in section 4. The solid line repre-
sents the MCE-trained context-dependent model.
The ®gure presents the average overall word error
rate and the digit error rate (with no rejection) as a
function of processing speed on an SGI R10000
machine. 8 Varying the speed of the decoder has
been obtained by changing the operating beam
width.

From the two results in Fig. 7, the following
conclusions can be drawn. (a) Improved acoustic
modeling and discriminative training has led to
20±30% reduction in the word and digit error
rates. The reduction in the digit error rate, in
particular, is critical since it translates to over 10%
reduction in the absolute numeric string error rate
(Rahim, 1999a). (b) For either method, the knee
points on the curves are well positioned below the
real-time (RT) mark. The computing time shown
in Fig. 7 represents o�-line processing of the entire
system in Fig. 4.

The second set of experiments evaluates the
speech understanding module. At this stage, we

8 The word error rate includes the insertion, deletion and

substitution error rates normalized by the total word count. The

digit error rate includes the insertion, deletion and substitution

error rates at the output of the understanding module normal-

ized by the total digit count.
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are interested whether the interpretation of the
spoken input following recognition matches that
of the transcription. The understanding module
converts an input text into a sequence of digits
using the rules de®ned in Table 1. An action of
this module is considered correct if the output
digit sequences match between the recognized
speech and its transcription. Fig. 8 displays the
understanding error rates for the two previously
described models (i.e., MLE-based and MCE-
based) as a function of processing speed. These
results echo our previous ®ndings that a dis-
criminatively trained context-dependent acoustic
model outperforms a standard ML-trained con-
text-independent model. A typical operating point
is 26% error rate with no rejection. This implies
that the interpretation for 74% of the utterances
is the same for the recognized speech and its
transcription.

An important strategy for improving system
performance is by utilizing utterance veri®cation.
In the third set of experiments we aim to utilize the

output of the HME as a con®dence score to
identify when the interpretation of the under-
standing module is incorrect. Clearly this provides
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valuable information for the dialogue manager
when responding to the user. In this study, we have
applied utterance veri®cation for detecting recog-
nition errors among utterances that included the
numeric language. This is clearly a much tougher
challenge than rejecting out-of-vocabulary words.
Utterances that included solely out-of-vocabulary
words were found not to be confused with the
numeric language strictly based on their recog-
nized contents. Separating and rejecting those ut-
terances was therefore trivial without having to
apply utterance veri®cation. This conclusion is
considered as one of the advantages of the pro-
posed approach for numeric recognition. Methods
that rely on more constrained grammars often
show larger confusability between in-vocabulary
and out-of-vocabulary data.

Fig. 9(b) shows the distribution of the output of
the HME when the data is correctly interpreted,
i.e., Pr/�y � H0jO�, and when the data is incor-

rectly interpreted, i.e., Pr/�y � H1jO�. To baseline
our results, Fig. 9(a) shows the distribution of
the likelihood ratio scores when computed using
the veri®cation models. This is considered as the
classical approach when performing utterance
veri®cation, particularly for digit recognition
(Rahim et al., 1997). The amount of overlap in the
two distributions, which de®ne the false rejection
rate and the false acceptance rate, is clearly smaller
for the HME case; a result that is attributed to the
additional input features. In particular, the equal
error rate (i.e., false acceptance � false rejection)
and the minimum error rate (min(false acceptance
+ false rejection)) are 14% and 23%, respectively,
for the likelihood ratio score, and 10% and 18%,
respectively, for the HME method.

In the following results we compare the per-
formance of the HME with that of a GMM.
Fig. 10 shows the receiver operating characteristic
(ROC) curves for the two methods, that is, the
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detection rate (1± false rejection rate) versus false
alarms (false acceptance). The HME clearly dem-
onstrates better performance than the GMM at all
possible settings. At an operating point of 10%
false acceptance rate, for example, the detection
rates are 79% and 90% for the GMM and the
HME systems, respectively. Instrumenting utter-
ance veri®cation at this operating point translates
to a boost in the understanding correct rate for the
HME system from 74%, as shown in Fig. 8 when
not using utterance veri®cation, to 90% (Rahim,
1999b).

From a designer's prospective, Fig. 11 illus-
trates the trade-o� between false acceptance and
false rejection as a function of the con®dence
measure (or decision threshold). One interesting
remark is that the output of the HME is a true
probability which re¯ects a mapping of the veri®-
cation measurements into either correct or incor-
rect class decision. The minimum and equal error
rates, which both seem to have similar thresholds,
are less than 18% and 10%, respectively. The last
step before sending information to the dialogue
manager is validation. Checking whether the
sequence of digits at the output of the under-
standing system corresponds to an active tele-
phone or card number is valuable information.
Based on this knowledge, the dialogue manager
may determine a particular strategy, such as to

reprompt the user or to simply connect to a live
operator.

Fig. 12 shows a break down of the telephone
number strings based on whether or not they
represented valid or invalid numbers. Validity of
these strings was a result of an inquiry with a
telephone number database. These telephone
numbers were acquired at the output of the un-
derstanding system. The ®gure shows the results
for the top 10 candidate strings which were
checked against the database in order. Should the
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top candidate correspond to an invalid number,
for example, the next candidate would be
checked, and so. The results in Fig. 12 indicate
that 61% of the recognized output strings (i.e., top
hypothesis) correspond to valid telephone num-
bers. For the 39% invalid strings, the ®gure shows
that succeeding candidates are valid in some in-
stances. Based on this ®nding, the dialogue
manager may decide to examine those candidates
instead. 9

Table 2 presents the digit and string error rates
based on the top candidate for the valid and in-
valid data. For the 61% valid strings, the digit
and string error rates are 0.6% and 5.5%, re-
spectively. For the invalid strings, these error
rates are 18.5% and 55.0%, respectively. Those
remarkable results imply that valid telephone
numbers at the output of the understanding sys-
tem are very likely to be correctly recognized; a
conclusion that is valuable in the design of spo-
ken dialogue systems.

6. Discussion and summary

The problem we are trying to solve is automatic
recognition and understanding of ¯uent speech in
spoken dialogue systems. In particular, we are
focusing on task domains that involve the use of
the numeric language. For example, tasks that
require the utilization of credit card, telephone
numbers, zip codes, dates, times, etc. Irrespective
of the application, it is our premise that these tasks

are very well de®ned and that they can be inte-
grated into a uni®ed language framework.

The use of the numeric language in mixed-ini-
tiative spoken language dialogue presents several
challenges particularly when dealing with users
who are unfamiliar with the operation or the de-
sign of the dialogue system. First, the spoken
number string may be encoded by digits, natural
numbers and alphabets that must all be correctly
recognized to successfully automate the call. Sec-
ond, the input speech may be embedded in a pool
of out-of-vocabulary words with possible correc-
tions, false-starts and other problematic situations
that are features of ¯uent and spontaneous speech.
Third, the input speech may be ambiguous, that is,
it may contain either con¯icting information, in-
valid numbers or incomplete information. Rather
than trying to deal with these problems in a gen-
eral way, our approach has been to narrow down
this problem to consider only those ``salient''
phrases that are of interest to our task. The set of
these phrases were referred to as the numeric lan-
guage.

This paper presented our progress towards
robust numeric language recognition in spoken
language dialogue. Our strategy has been to
consider this problem as a large vocabulary
speech recognition task that is especially tailored
to provide high quality robust recognition of the
numeric language. This approach is unlike tradi-
tional methods that instrument handcrafted
grammars for digit recognition along with ®ller
models to accommodate for out-of-vocabulary
words.

The experimental database presented in this
study represented automated customer service in-
quiries for credit card and telephone numbers.
This is a subset of a ®eld trial involving AT&T
customers responding to the open-ended prompt
``How May I Help You?''. For this spoken lan-
guage dialog, maintaining system robustness im-
plies enabling any customer to access information
when calling from anywhere. This target demands
maintaining robustness at several levels of system
design, including acoustic, language, understand-
ing and dialogue. In this paper, we presented
methods for acoustic modeling, discriminative
training, class-based language modeling, utterance

9 Performing the validation process on the transcribed data,

as opposed to the recognized strings, resulted in 76% validity.

This indicates that misrecognition in our system caused 15%

(76ÿ 61) of the requests to be misinterpreted.

Table 2

Digit and string error rates for valid and invalid telephone

numbers

Valid (top candidate) Invalid

Digit 0.6 18.5

String 5.5 55.0
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veri®cation, numeric understanding and string
validation. Collectively, these building blocks
generate several string hypotheses which are pas-
sed to the dialogue manager along with con®dence
measures and information on whether or not these
strings represent valid numbers. The action set of
the dialogue manager includes call completion,
disambiguation, con®rmation, clari®cation and
error recovery (Abella and Gorin, 1997).

Experimental results on 626 utterances have
concluded the following:
1. Improved acoustic modeling and discriminative

training for the numeric language leads to 20±
30% reduction in the numeric error rate. It also
provides a higher interpretation accuracy of the
numeric data and reduces the absolute under-
standing error rate by 10%.

2. The combination of ®ve veri®cation features us-
ing an HME provides an accurate utterance
veri®cation system for identifying incorrectly
interpreted strings. At an operating point of
10% false acceptance, for example, the detec-
tion rate increases from a baseline of 74% to
over 90%.

3. Validating the output of the understanding sys-
tem through a prede®ned grammar of tele-
phone and card numbers helps tremendously
in reducing the overall system error rate. For
the 61% valid telephone numbers at the output
of recognizer, the digit error rate was observed
to be 0.6%.

It should be pointed out that the majority of the
data used in our experiments were collected from
®eld trial experiments with real customers.
Accordingly the set of problems that the system
encounters are more challenging than those ex-
perienced from data recordings with users fa-
miliar with either the technology or the system.
Although the amount of test data used in this
study was rather limited, it pointed out to some
interesting problems that need to be addressed in
spoken language dialogue. It also suggests that
maintaining robustness in dialogue systems re-
quire tight integration and communication be-
tween the speech recognition module, the
understanding module and the dialogue manager.
Further research in this direction is clearly
needed.
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