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Abstract

Methods for utterance verification (UV) and their integration into statistical language modeling and understanding
formalisms for a large vocabulary spoken understanding system are presented. The paper consists of three parts. First, a
set of acoustic likelihood ratio (LR) based UV techniques are described and applied to the problem of rejecting portions
of a hypothesized word string that may have been incorrectly decoded by a large vocabulary continuous speech rec-
ognizer. Second, a procedure for integrating the acoustic level confidence measures with the statistical language model is
described. Finally, the effect of integrating acoustic level confidence into the spoken language understanding unit (SLU)
in a call-type classification task is discussed. These techniques were evaluated on utterances collected from a highly
unconstrained call routing task performed over the telephone network. They have been evaluated in terms of their
ability to classify utterances into a set of 15 call-types that are accepted by the application. © 2001 Elsevier Science

B.V. All rights reserved.

1. Introduction

This paper is concerned with the acoustic
modeling, language modeling, and understanding
components of a large vocabulary spoken lan-
guage understanding system. The goal of the work
described in the paper is to develop systems where
these individual components are more closely
coupled, both in the methods that are used to
configure them and in the manner in which they
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interact in the system’s operation. The process of a
configuring large vocabulary spoken language
understanding system for a task from data has in
the past been performed by training stochastic
models for each of the individual components
separately. Language models and spoken language
understanding models have generally been defined
over a fixed lexicon obtained from text or tran-
scribed speech utterances, and have not themselves
incorporated any acoustic knowledge. It will be
shown here that automatic speech recognition
(ASR) performance can be improved by incorpo-
rating representations of acoustic confidence di-
rectly into language model training. It will also be
shown that spoken language understanding per-
formance can be improved by incorporating
acoustic confidence when associating utterances
with semantic categories.
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Utterance verification (UV) techniques are ap-
plied in this work to an automated call routing
task (Gorin et al., 1997; Riccardi et al., 1997). The
distinguishing aspect of this task is that it attempts
to derive a small number of semantic actions from
utterances spoken by users who may have little or
no knowledge of the limitations of the system. It is
often the case that the utterances that are pre-
sented to the system have no relevance at all to the
domain in question, contain words or phrases that
are out-of-vocabulary (OOV), or were not cor-
rectly recognized by the ASR component of the
system. The call routing task and the characteris-
tics of the utterances derived from the task are
briefly described in Section 2.

It is often the case that human-machine inter-
faces are configured so that a large percentage of the
input utterances are ill-formed. This is the case for
user-initiated human-machine dialog (Lleida and
Rose, 1996; Young and Ward, 1993), automation of
telecommunications services (Wilpon et al., 1990),
and is certainly true in case for machine interpre-
tation of human-human dialog (Cox and Rose,
1996; Rose et al., 1995). Utterance verification in
this context implies the ability to detect vocabulary
words in an utterance that may contain words or
phrases which are not explicitly modeled in the
speech recognizer. However, even when input ut-
terances tend to be well-formed and contain rela-
tively few OOV words, UV techniques can be
applied to determine when decoded word hypothe-
ses are correct. These procedures have been shown
to improve performance in a number of applications
where OOV utterances are relatively rare including
telephone based connected digit and command
word recognition (Rahim et al., 1996).

A set of acoustic likelihood ratio (LR) based
confidence measures for UV are defined in Section
3, and preliminary UV results for these measures
on the call routing task are described. These
measures are similar to a set of techniques that
were developed and applied to a “movie locator”
dialog task (Lleida and Rose, 1996). Each hy-
pothesized word or phrase obtained from the ASR
decoder is assigned a confidence measure which is
passed along to the natural language back-end to
weight decisions in classifying utterances accord-
ing to call-type.

A mechanism by which acoustic and linguistic
information can be combined through incorpo-
rating the notion of acoustic confidence in a sto-
chastic automaton (SA) is discussed in Section 4.
There are a number of examples of confidence
measures that incorporate both acoustic and lan-
guage level scores (Neti et al., 1997). The approach
that is considered here attempts to extend the
notion of an SA, which is currently used to de-
scribe an N-gram language model for speech rec-
ognition (Riccardi et al., 1996). In the simplest
case, a state in an SA may correspond to a word
context for some word w;, and the weight on an arc
extending from the state would correspond to the
probability of producing w; given the previous
state. There are a number of ways in which
acoustic confidence could be incorporated into this
framework. In Section 4, we investigate a method
where the definition of a state in the language
model can be expanded to include not only the
word context but also a discrete, coded represen-
tation of the acoustic confidence obtained for the
word history. By modeling an additional state
variable corresponding to acoustic confidence we
thereby expand the state space of the associated
SA.

Classification of spoken utterances into a small
number of semantic categories by the SLU in-
volves searching through a lattice of grammar
fragments that have been extracted from the input
speech. Section 5 describes how word level
acoustic confidence scores are used in the process
of obtaining the a posteriori probabilities that are
associated with these semantic categories.

2. Automated call routing task

The utterances used for the experimental study
described in this paper were taken from a database
of 10,000 spoken transactions between customers
and human telephone operators over the public
switched telephone network. There were very few
repeat callers. We focused on the first customer
utterance, the unconstrained response to the
greeting prompt of “How may I help you?” (Gorin
et al., 1997; Riccardi et al., 1997). These utterances
were orthographically transcribed and then labeled
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with one or more of fifteen call-type labels. Four-
teen of the labels correspond to specific actions
that the customer may request, such as billing-
credit, collect-call or rate-request, and the last
(other) subsumes the remainder. Although the
callers’ spoken language varies widely, most of the
time they are asking for one of a moderate number
of services, so only a small proportion of the ut-
terances are labeled other.

A subset of 2243 utterances was used for
training subword acoustic hidden Markov models
(HMM), and a subset of 7844 utterances for
training language models for recognition and
understanding. The overall vocabulary of the
training data is approximately 3600 words. A
separate subset of 1000 utterances was used for
testing. The average utterance duration is 5.9 s,
corresponding to an average sentence length of 18
words, and the longest utterance duration is 53 s.
The OOV rate at the token level in the test sen-
tences is 1.6%, and at the utterance level 30%. It
is difficult to characterize the range of “typical”
OOV words as coming from a particular part of
speech. Typical utterances that were input to the
system are shown in examples given in Sections 4
and 5.

The performance of a fully automatic spoken
language system with customer utterances as input
and call-type labels as output was evaluated on the
test subset. The test utterances were passed
through the speech recognizer and then classified
using matched salient grammar fragments ex-
ploiting the UV weighting as described in Section 5.

3. Acoustic measures for UV

This section presents an LR based procedure
for generating word level acoustic confidence
measures (Lleida and Rose, 1996, 2000). First, UV
is presented in a hypothesis testing framework,
and the form of the densities used in the LR based
hypothesis test for UV is described. Second, the
procedures for training a dedicated set of UV—
HMM models is described. Finally, UV perfor-
mance is presented for the utterances in the call
routing task described in Section 3.3.

3.1. UV models and hypothesis testing

It is assumed that the input to the speech rec-
ognizer is a sequence of feature vectors
Y = {3,),...,Jr} representing a speech utterance
containing both within-vocabulary and OOV
words. The within-vocabulary words will be re-
ferred to here as belonging to the class of “target”
hypotheses and the OOV words will be referred to
as “imposters” or belonging to the class of alter-
nate hypotheses. Incorrectly decoded vocabulary
words appearing as substitutions or insertions in
the output string from the recognizer will also be
referred to as belonging to the class of alternate
hypotheses. It is also assumed that the output of
the recognizer is a single word string hypothesis
W =wy,...,wg of length K. Of course, all the
discussion in this section can be casily generalized
to the problems of verifying one of the multiple
complete or partial string hypotheses produced as
part of an N-best list or word lattice as well.

In the context of UV, it is assumed that sub-
word HMM models are given for each subword
unit u in subword set £ for both target hypotheses,
{28, u € 2}, and alternative hypotheses, {1 u €
2}. The UV score, S, for a given word, wy, is
obtained by combining the LR scores for the
acoustic subword units, u;, j=1,...,N;, that
make up that word. Given Y,, a sequence of ob-
servation vectors that have been decoded as HMM
subword unit, u, a log LR score

log %, = log P(Y,|%,) —log P(Y,| ;) (1)

can be computed. The purpose of Eq. (1) is to
provide a measure of the degree to which the
subword unit explains the data.

A log LR score like the one in Eq. (1) can ex-
hibit undesirable behavior as a result of the large
dynamic range that is characteristic of all LRs. In
order to deal with this large dynamic range, the
following definition is used for the alternate hy-
pothesis probability:

P(Y,|%) = aP(Y, |2%) + (1 = 2)P(Y, |40),  (2)
where 0 <a < 1. In Eq. (2), the alternate hypoth-

esis probability for subword unit u is a weighted
linear combination of probabilities computed from
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a subword dependent ° 1mposter model A A ,and a
“background” model A g, which is shared across
all units. The purpose of / /Lu/ , referred to here as the
imposter alternate hypothesis model for subword
unit u;, is to provide a description of the speech
segments that are frequently decoded incorrectly
as u;. Each of the subword models )‘m and £, are
represented as three state left-to- rlght models "The
purpose of A%, referred to here as the background
alternative model, is to provide a broad represen-
tation which “covers’ the entire space of acoustic
features. This broad representation serves to re-
duce the dynamic range and to reduce the influ-
ence of out-liers on the value of the LR. A single
one state, 64 mixture background alternate hy-
pothesis model is shared amongst all ‘“‘target”
HMM models. While a method for estimating the
interpolation coefficient « in Eq. (2) was described
in (Lleida and Rose, 1996, 2000), « was empirically
determined for the experimental evaluation de-
scribed in Section 3.3.

A word level score S; is computed as a non-
linear weighting of the subword level log LR
scores and used to form a decision rule

LR 2T, 3)

7

Sy =f(LR,,,...

where f() is a geometric mean. The effect of the
geometric mean in Eq. (3) is to assign greater
weight to units with lower LR scores. As a result,
an individual unit with a particularly low LR score
can cause the word score S; to be low. This would
allow for the rejection of word wy if a single sub-
word unit LR score were low. Eq. (3) also de-
scribes a decision criterion, where w; is either
accepted or rejected as a correctly decoded word
hypothesis by comparing S; to a decision threshold
1. A, represents the null hypothesis corresponding
to a portion of the utterance being correctly de-
coded as word wy, and #| represents the alternate
hypothesis.

In incorporating acoustic confidence measures
into the SLU system, it is not assumed that indi-
vidual words have been classified according to the
above hypotheses. Instead, a simple non-para-
metric approach is used for converting the word
scores, S;, to the a posteriori probabilities of the

word being correctly decoded given its confidence
measure, P(C =1|S; =s). Here, C =1 corre-
sponds to the event that wy is correctly decoded
and S, = s corresponds to the event that the word
score S, takes on the value s. This is the measure
that is presented to the SLU system. Empirical
distributions were obtained for the above a pos-
teriori probabilities by partitioning the range of
word level scores into B discrete bins and com-
puting bin occupancy counts for the scores from
the training data to obtain

(C—ISk {;1;} i:l,...,B). (4)

A single “back-off” distribution of the same
form was trained for those words that had insuf-
ficient occurrences in the training data for dedi-
cated distributions to be estimated.

3.2. UV model training

Two training procedures are implemented here
for estimating UV model parameters. The first is
based on a maximum likelihood (ML) optimization
criterion, the second procedure is based on a dis-
criminative procedure that will be referred to here
as LR training. More detailed discussion of both
procedures for UV model training can be found
elsewhere (Lleida and Rose, 1996; Rose et al.,
1995).

ML training of the subword unit dependent
models, A, and A", is performed in two steps.
First, speech recognition is performed on a set of
development utterances, and subword units cor-
responding to correct decodings, insertions and
substitutions are labeled in the output stream.
Second, ML based forward—backward training of
the UV HMM models is performed. This is done
by updating the conditional expectations for im-
poster model parameters using decoded units that
were labeled as false alarms in the hypothesized
strings, and updating the target model conditional
expectations using decoded units labeled as cor-
rectly decoded. As a result of this process, each
subword model /1““ is trained to represent the
events that are frequently confused with subword
unit u;. It is important to note that the insertions
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and substitutions are labeled at the subword level.
This implies that if a word substitution occurs in
speech recognition where the decoded word differs
from the actual word in only a single subword
unit, then only that single unit will be recorded as a
substitution.

In LR training, the cost function used for esti-
mating HMM model parameters is very similar to
the LR criterion that is used for UV (Lleida and
Rose, 1996; Rose et al., 1995). A procedure similar
to that used above for ML training is performed to
obtain a string of decoded subword units that have
been labeled as being correctly decoded and false
alarms. These labeled units are used in a gradient
update procedure for updating the target and al-
ternative hypothesis model parameters. The goal
of the procedure is to increase the average LR for
those observations corresponding to correctly de-
coded units and to decrease the average LR for
those observations corresponding to false alarms.

It should be noted that there exists a training
corpus from the task domain described in Section
2 for all of the acoustic modeling techniques that
are investigated here. This is also true for the
language and understanding models discussed in
Sections 4 and 5. Furthermore, the LR training
procedure that is used for UV model training at-
tempts to optimize what can be considered as a
discriminative training criterion. Discriminative
training algorithms are generally considered ap-
propriate in situations where it is difficult to pose
the exact structure of the model and also where a
fairly large, labeled task specific speech training
corpus is available. Informal experiments have
suggested that a reduction in the number of
acoustic training utterances result in a reduction in
the level of UV performance relative to that pre-
sented in Section 3.3. As a result, the issues of
portability of these techniques to a new domain
where there are limited task specific resources are
not directly addressed here.

3.3. Acoustic UV performance

In order to evaluate UV performance, confi-
dence measures of the form described in Section
3.1 were calculated for each word in the decoded
word strings obtained from the 1000 utterance test

set described in Section 2. These confidence
measures were evaluated in terms of their ability
to distinguish between correctly and incorrectly
decoded words appearing in the output word
strings. Only a subset of the total vocabulary
words were included in the measure. These were
words that were both considered to be “salient”
according to the spoken language understanding
unit (SLU) and were also not on a list of short
duration words whose acoustic realization were
considered to be highly dependent on the sur-
rounding context. Examples of words that were
used for evaluating acoustic UV performance in-
clude area, charge, credit, direct and long. The 134
words that were chosen accounted for approxi-
mately 30% of the total word occurrences in the
test utterances.

The performance was evaluated in terms of re-
ceiver operating characteristic (ROC) curves as
shown in Fig. 1. Each of the curves in Fig. 1 were
generated by sweeping a single decision threshold
over the a posteriori scores obtained for all de-
coded occurrences of the set of 134 words. The use
of empirical distributions for the estimation of a
posteriori probabilities from LRs as described in
Section 3.1 serves to reduce the variability of these
scores across words in the vocabulary. The vertical
axis in Fig. 1 represents the probability of detect-
ing a correctly decoded word hypothesis and the

HMIHY Vocabulary Words
1 - . .

0.9}
50.8t

8
Lozt

9
a0:5r J . |—Phone Dependent (LR)

04l | -~ Phone Dependent (ML)
I - Simple Model

0% 0.2 0.4 06

brob of false alarm

Fig. 1. ROC curves plotted over the confidence measures ob-
tained for three separate sets of UV models.
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horizontal axis represents the probability of false
acceptance of an incorrectly decoded word hy-
pothesis. The three experiments that were per-
formed correspond to different definitions of the
alternate hypothesis model probability densities in
Eq. (2), and different UV model training criteria.
The “simple model” curve was obtained using only
the subword independent background model to
define the alternate hypothesis model density so
that P(Y,|2!) = P(Y,|°®). The other two “subword
dependent” curves were obtained using the linear
combination of background and imposter models
in Eq. (2) to obtain the subword level log LR
scores with o« =0.2. Anecdotal experiments
showed that performance is not very sensitive to
the exact setting of «. For the “ML” curve, UV
models were trained using a ML criterion. For the
“LR” curve, the UV models were trained using the
discriminative LR criterion.

It is clear from Fig. 1 that the use of subword
dependent units for representing the alternate hy-
pothesis probability significantly improves the
word level detection performance on this task. At
a probability of false alarm equal to 20%, the de-
tection probability increases by over 30% when
subword dependent units are used. Fig. 1 also
shows an increase in performance by 10% when
parameters are trained using an LR criterion for
training subword dependent parameters.

4. Integration into language model

Using localized measures of acoustic confidence
by themselves can be misleading when the effects
of linguistic context are significant, as is true in the
case of large vocabulary speech recognition. Sto-
chastic language models for speech recognition are
usually trained from text transcriptions and thus
assume that the speech recognition is error-free.
The goal here is to exploit acoustic confidence
measures derived from the actual speech utterance
to account for an imperfect decoder.

4.1. Incorporating measures of acoustic confidence

Our approach to integrating acoustic level
confidence with the language model is to augment

the word n-gram event space, which currently de-
fines linguistic context, with encoded values of
acoustic confidence. A stochastic language model
is generally defined over the elements of a K length
word sequence, wy, ..., wg, for an utterance where
w; € V, and V'is the lexicon for the task. In Section
3 we have shown how to estimate UV scores for
each word in a speech utterance. Since these two
information sources are synchronous, the acoustic
and lexical information can be coupled in order to
learn a stochastic model based on their joint dis-
tribution. Thus, the word string can be replaced by
a symbol-pair sequence and an utterance is repre-
sented by (wy,c), (W2, ¢2),..., (wg,cx), where
¢ €1[0,...,0—1],is a discrete, Q level encoding of
the acoustic confidence for word w;. In particular,
the acoustic and lexical context for word w; in a
third-order statistical n-gram language model
would be augmented from {w,_,w; 2} to
{(Wi—la cifl)a (Wi—Za 0572)}-

The obvious advantage of this scheme is to re-
duce the probability that an inserted or substituted
word u in the recognition output will result in
additional errors. A very high observed co-occur-
rence of this word with another word v in the text
training corpus may result in the word bigram
probability P(w; = v|w;_; =u) being very high.
However, the word context could also be condi-
tioned on, for example, a binary random variable
representing acoustic confidence. As a result,

P(w; = v|lw;_y = u,c;_; =0), corresponding to the
case when there is low acoustic confidence at
word w;_; = u might be much lower than P(w; =
vlw;_1 = u,¢;_; = 1) corresponding to high acoustic
confidence.

Of course, these probabilities must be estimated
from a limited corpus of acoustic training utter-
ances, which is generally over an order of magni-
tude smaller than the text corpus for training
language models. With this small amount of data
for training, the issue of dealing with the robust-
ness of these acoustic confidence conditioned
(ACC) probability estimates becomes critical. Our
approach in the paper is to deal with this issue in a
manner similar to that used in estimating language
model probabilities. When an n-gram context oc-
curs infrequently or not at all with a given acoustic
confidence level in the acoustic training data, one
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of many possible back-off mechanisms may be
invoked (Riccardi et al., 1996).

4.2. Stochastic transducers for language modeling
and UV

Our approach to language modeling is based on
stochastic finite state machines (SFSM) learning.
The SFSM are a tool for providing a compact and
efficient model to represent a wide class of prob-
ability distributions over sequences drawn from a
finite set (Riccardi et al., 1996). In this work, we
consider the variable N-gram stochastic automa-
ton (VNSA) learning algorithm (Riccardi et al.,
1996). The VNSA is a non-deterministic SA that
allows for parsing any possible symbol sequences
W = wi,wy,...,wy drawn from an input language
L;. In its simplest implementation, the state s; in
the VNSA encapsulates the word sequence prefixes
observed in the training data. Each state recog-
nizes a symbol w; and the probability of going
from state s; to state s; is pr = p(sip1]s;). The
probability of a word sequence W is then associ-
ated with the state sequences 5;’/ and computed as
P(W) = X, P(EV).

The automatic learning of stochastic finite state
automata that incorporate ACC probabilities fits
very nicely under the frame-work of the VNSA
(Riccardi et al., 1996). As described above, the
notion of a state in the VNSA can be expanded to
include encoded acoustic confidence measures
along with word history. The notion of backing-off
to null states need not correspond strictly to pro-
ceeding from higher order to lower order n-gram
contexts, but can also be invoked to deal with lack
of statistical robustness in the estimation of ACC
probabilities. Furthermore, the VNSA formalism
can be extended to learn joint probability distri-
butions for stochastic transducers. Transducers
recognize strings from an input language L; (e.g.
set of all word sequences) and map into strings of
an output language L, (e.g. set of all possible ¢;
sequences). The class of transducers we consider in
this work 1is called sequential transducers. For
further details on this literature see (Berstel, 1979).
In Fig. 2, we draw an example of a stochastic
transducer for the input sequences (collect call
please, collect) and the paired binary score

collect:1/0.5

collect:1/0.5

@ call:0/0 @ please:1/0 40

Fig. 2. Example of stochastic transducer. Each arc in the
transducer carries the triple w : ¢/p corresponding to the input
and output label and transition probability, respectively.

sequence (101),(1). In Fig. 2, the arcs carry the
triplet w; : ¢;/p;, where w; € V, ¢; € {0,1} and p;
are the state transition probability (final states are
double-circled). Note that, in the case of stochastic
transducers, p; is the probability of going from
state s; to state s;,; and emitting the symbol ¢; in
the language L,. Hence, stochastic transducers al-
low for local modeling (i.e. state level) of joint
probabilities.

The following procedure has been investigated
for training a stochastic language model that in-
corporates acoustic confidence:

1. Estimate word level UV scores for words in
training data sets (4317 utterances).

2. Quantize UV scores into Q levels (Q = 2).

3. Estimate ACC word counts from data.

4. Learn VNSA state transition function and
probabilities from word and quantized UV
score sequences (Riccardi et al., 1996).

5. Prune states in VNSA network (Riccardi et al.,
1996).

Using this algorithm, the SFSM can be learned

from two independent information sources: the

lexical word sequence and the sequence of quan-
tized acoustic scores. The stochastic transducer is
designed by associating each speech input utter-
ance with a sequence of word/symbol pairs (w;, ¢;).

The next section describes results obtained when a

finite state machine for large vocabulary speech

recognition was trained using a training set of
these word/symbol pair sequences.

4.3. Performance of UVILM integration

The class of stochastic transducers described in
Section 4.2 has been incorporated into the large
vocabulary speech recognizer and tested on the
1000 utterance test set for the task described in
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Section 2. The speech decoding algorithm per-
forms a standard Viterbi search over all hypothe-
sized word/symbol pairs W,C = (wy,c1), (w2, ¢2),
..., (wy,cy) in order to maximize

(W,C) = ar%/rréax Aamwp(w,C), (5)

where we assumed that the acoustic likelihood of a
word is conditionally independent of the confi-
dence scores, C, i.e. P(4|W,C) = P(4|W). Thus,
the prediction on the best quantized scores ¢; does
not involve any on-line computation of LR scores.
The output produced by the recognizer is a hy-
pothesized string of word/symbol pairs, providing
an indication of the confidence associated with
each word. An excerpt from this experiment is
shown below:

ASR I'm/0 dialing/0 use/l my/1 credit/1 card/l

REF I wanna use my credit card

ASR yes/1 I'm/0 trying/1 the/0 calling/1 card/1
call/l

REF yes I'm trying to make a calling card call
ASR hi/0 I'm/0 calling/0 the/0 number/1

REF hi I'm having trouble getting through to
the number

where for each transcribed (REF) sentence is given
the decoded (ASR) sequence of word-quantized-
confidence-score pairs. The value of the quantized
confidence score predicts the confidence on the
decoded word. The recognition accuracy improved
only slightly from 45% to 46.5%. To assess the
performance of the ¢; labeling over the word se-
quences, we have compared the system just de-
scribed (c¢; scoring based on the stochastic
transducers) with the system presented in Section 3
(on-line computation of quantized LR scores).
There are two useful figures of merit we have
computed to evaluate the accuracy of the UV
coding scheme. They are the probability of cor-
rectly labeling words for the case of ¢; =0 (i.e.
misrecognized word) and ¢; = 1 (correctly recog-
nized word), and they correspond to the
probability P(c; =¢; =0) and P(¢c; =¢ = 1), re-
spectively. In Table 1, the two figures of merit are
shown for the stochastic transducer-based (ST)
and on-line LR score computation (OLLR) sys-

Table 1
Figures of Merit I (P(¢; = ¢ =0)) and II (P(¢; = ¢ = 1)) for
the two systems ST and OLLR

System Figures of Merit

I 1T
ST 0.470 0.930
OLLR 0.395 0.852

tems. It is very interesting to note that the ST
system provides a good indication as to whether or
not a given word was correctly decoded.

The goal in developing the expanded finite state
network described in Section 4.2 was to make it
possible to implement a system that can extract
word level measures of acoustic confidence during
decoding and use coded representations of these
confidence measures as the network is expanded.
Clearly, the experimental results described in this
section suggest that the combination of the ACC
probability computation with the on-line LR
scores has the potential for improving the ASR
performance. There are a number of important
issues involved in implementing this fully inte-
grated ACC system. The first is the implementa-
tion of a single-pass CSR decoder/UV system that
can produce confidence scores frame synchro-
nously and make them available to the finite state
network. A low complexity single-pass decoder,
designed to directly optimize a LR criterion, has
been proposed and evaluated for this purpose in
(Lleida and Rose, 1996). A second issue involves
exactly how the frame synchronous UV scores are
passed to the finite state network, and what heu-
ristics must be implemented in combining the new
acoustic and language scores as paths are propa-
gated in the network. These issues are addressed in
more detail in (Rose and Riccardi, 1999).

5. UV in call-type classification

Spoken utterances are classified as to call-type
by recognizing and spotting the occurrences of sa-
lient events within them. Previously, we have used
salient phrase fragments for classification (Gorin
et al., 1997). These are acquired automatically from
the training data by searching the space of phrase
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fragments guided by two criteria: the mutual in-
formation between the words within a phrase, and
the mutual information between the phrase and the
set of call-type labels. More recently we use salient
grammar fragments for classification (Wright et al.,
1997). These are also acquired automatically, by
clustering the salient phrases (using a combined
string-distortion and semantic-distortion measure)
and forming the phrase clusters into finite-state
machines. The salient grammar fragments have
good coverage of the task and reasonably robust
statistics, and tend to be less ambiguous than in-
dividual words. Moreover they can contain em-
bedded non-terminal symbols representing
auxiliary data within the sentence, such as a tele-
phone or calling card number, which can be of
value in determining the call-type.

A simple example of a grammar fragment is
shown in Fig. 3(a), and a successful match of a
path through the finite state machine to a sub-
string of the utterance generates a detection from
which call-type classification can follow, see Fig.
3(b). In general, there may be multiple occurrences
of salient fragments within an utterance, and oc-
curences may also overlap. First, a confidence
score is associated with each detected event, given
by the geometric mean of UV scores for the indi-
vidual words in the matched phrase. For each
grammar fragment, there exists an associated
posterior distribution over the call-types (derived
from the training data) and this is scaled by this
confidence score. For each call-type, the lattice of
detected events is then parsed to find the highest
cumulative scaled posterior probability along a

(b)

rd like to

to ltaly please

Fig. 3. (a) A simple grammar fragment; (b) approximate match
of grammar fragment to an utterance.

path through non-overlapping detections. These
cumulative scores are then passed through a sin-
gle-layer neural network in order to generate an
output for each call-type in the range (0, 1), which
we interpret as a set of probabilities. The network
is trained by applying a similar procedure to the
transcribed training data and using the manually-
assigned labels to determine the required output
for each utterance. No UV is involved in classifier
training. We test the utility of UV in classification
by comparing the results obtained in this way with
those obtained when the UV scores are ignored,
i.e. no scaling of the posterior distributions.

In the call-routing task, one of the 15 call-types
is called other and these are utterances that don’t
fall into any of the specific categories. The inten-
tion is that these calls be transferred immediately
to a human agent, so this establishes a criterion for
rejection. We can measure the true and false re-
jection rates for a labeled test set, as well as the
true classification rate. A call is rejected either if
the decision is “other” or if the score is below a
given threshold. By varying the threshold we can
generate ROC curves of the type shown in Fig. 4,
which displays the percentage of utterances in the
1000 utterance test corpus that were correctly
classified according to call-type versus the per-
centage of utterances that were incorrectly rejected
by the system. For the rank 2 curve, a correct
classification means that either of the two highest-
ranked call-types is correct. Incorporating UV into
call-type classification clearly results in a signifi-
cant improvement in performance at both rank 1
and rank 2.

There follow two examples of test sentences
where UV helps to resolve a semantic conflict
caused by a recognition error. Salient phrases
within the recognizer output are shown in upper-
case together with the confidence score. In the first
example, the phrase “‘number for me” (associated
with the call-type dial-for-me (Gorin et al., 1997) is
anerror, and receives a low score compared with the
correctly-recognized phrase “to get credit” (asso-
ciated with the actual call-type billing-credit). In the
second, the phrase ome phone (associated with the
call-type third-number) is again an error, and re-
ceives a low score compared with the word collect
(associated with the actual call-type “collect™).
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Fig. 4. ROC curves describing the effect of UV on the call-type classification performance for the HMIHY task. The solid curves
correspond to the case where UV scores are integrated into SLU, and the dashed curves correspond to the real-time baseline system

implemented without UV.

Example 1.
Transcription: 1 like to get credit for a misdi-
aled number please”
Recognition: “Hi do you have
TO_GET_CREDIT (0.78) for a mister dial this
NUMBER_FOR_ME (0.30)

Example 2.
Transcription: “Well I was trying to make a col-
lect call to a mobile phone that’s not possible I
guess”’
Recognition: “Hi I was trying to make a COL-
LECT (0.99) call to my HOME_PHONE
(0.31) but I'd like to”

6. Summary and conclusions

This paper makes three major contributions to
the general problem of continuous speech recog-
nition from unconstrained speech utterances. The
first contribution is a demonstration of the fact
that UV techniques based on acoustic modeling

procedures can by themselves help to detect words
hypothesized by the speech recognizer that were
correctly decoded. The second contribution is a
statistically robust method for integrating acous-
tically derived UV measures with stochastic lan-
guage models. Finally, a third contribution is the
demonstration of how spoken language under-
standing performance can be improved when
acoustic UV measures are integrated into the SLU.
Call-type classification error was reduced by as
much as 23% when UV was used over an equiva-
lent system that did not incorporate UV. The
implementation of the techniques and the
experimental results presented here represent a
first attempt at developing formalisms that result
in more closely coupled acoustic, language and
semantic modeling components of spoken lan-
guage understanding systems.
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