
Detection of Essential Hypertension with Physiological Signals from
Wearable Devices

Arindam Ghosh1, Juan Manuel Mayor Torres1, Morena Danieli1, Giuseppe Riccardi1

Abstract— Early detection of essential hypertension can sup-
port the prevention of cardiovascular disease, a leading cause of
death. The traditional method of identification of hypertension
involves periodic blood pressure measurement using brachial
cuff-based measurement devices. While these devices are non-
invasive, they require manual setup for each measurement and
they are not suitable for continuous monitoring. Research has
shown that physiological signals such as Heart Rate Variability,
which is a measure of the cardiac autonomic activity, is
correlated with blood pressure. Wearable devices capable of
measuring physiological signals such as Heart Rate, Galvanic
Skin Response, Skin Temperature have recently become ubiq-
uitous. However, these signals are not accurate and are prone
to noise due to different artifacts. In this paper a) we present a
data collection protocol for continuous non-invasive monitoring
of physiological signals from wearable devices; b) we implement
signal processing techniques for signal estimation; c) we explore
how the continuous monitoring of these physiological signals
can be used to identify hypertensive patients; d) We conduct
a pilot study with a group of normotensive and hypertensive
patients to test our techniques. We show that physiological
signals extracted from wearable devices can distinguish between
these two groups with high accuracy.

I. INTRODUCTION

Hypertension is one of the most prevalent diseases of the
modern world. According to a recent report [1] by the World
Health Organization (WHO), hypertension affects more than
40% adults over the age of 25. In 2008 over 1 billion people
worldwide were found to be suffering with hypertension.
If left untreated it can lead to serious cardiovascular and
cerebrovascular complications, and even death due to renal
failure, heart attack or stroke.

The most common method of diagnosis of hypertension
is the detection of the presence of high-blood pressure using
brachial cuff-based measurement devices. These devices,
however, require careful setup for each measurement, and
they are not generally suitable for use outside clinical set-
tings. While doctors have advocated the use of ambulatory
blood pressure measuring devices for continuous monitoring,
they are more commonly accepted among patients who are
already hypertensive or have been diagnosed with high risk
of hypertension.

Several studies have demonstrated that continuous in-
creased activity of the sympathetic nervous system is in-
dicative of health problems. Our sympathetic nervous system
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controls our “fight or flight” response [2]. Sympathetic
over-activation leads to elevated heart rate, which increases
cardiac output. Since blood pressure is a product of cardiac
output, elevation of heart rate also leads to elevation of blood
pressure. Measurement of Heart Rate Variability (HRV) has
thus been shown to be an effective measure for the detection
and prediction of hypertension [3]. Other Physiological sig-
nals such as Skin Temperature and Galvanic Skin Response
(GSR), which are also indicative of the sympathetic activa-
tion, can also be of interest for the detection and monitoring
of hypertension.

In the recent years, wearable devices with multiple con-
nected sensors have made healthcare ubiquitous and patient-
centric. Unlike ambulatory monitoring systems, wearable
devices are mostly comfortable and aesthetic, and are being
rapidly adopted by the general population. Devices like the
Basis Armband [4], Microsoft Band [5], Empatica Embrace
[6] amongst others, are capable of measuring multiple motion
and physiological signals such as Galvanic Skin Conductance
(GSR), Skin Temperature, Blood Volume Pulse (BVP), and
Heart Rate. Such devices have opened up a great unprece-
dented opportunity for continuous remote monitoring and
predictive diagnosis for various medical conditions.

Researchers have already achieved a wide level of success
in the detection and monitoring of people suffering from
stress, epilepsy, bipolar disorder, and sleep apnoea [7], [8],
[9] using wearable sensors.

One major drawback of using wearable sensors is the pres-
ence of artifacts which can contaminate the signal. Artifacts
can be caused due to motion, pressure, vasoconstriction due
to cold weather, or nervous fidgeting [10]. Hence there is a
need to develop effective signal processing methodology for
artifact removal before these signals can be effectively used
for experiments on supervised hypertension detection.

In this paper we implement a robust signal processing
pipeline, and explore how individual and combinations of
various physiological signals can be used to detect hyperten-
sive patients. The paper is structured as follows. In Section
2 we describe our data collection and experimental design
protocol. In Section 3 we describe the signal processing,
artifact removal techniques, and results of our hypertension
detection task.

II. EXPERIMENTAL DESIGN

An observational Pilot Study was conducted with 10
Hypertensive and 10 normotensive adults for 10 days each.
Adults (male and female) between the age of 30 and 65
were selected for the study. Patients who were suffering from
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essential hypertension (EH, n=8) and receiving treatment
at the Centro Ipertensione Ospedale Molinette in Turin,
Italy were recruited. The healthy control (normotensive)
subjects were chosen by a psychologist to rule out hidden
hypertension, and any other underlying health problem that
might affect the study. The institutional ethics committee of
the Azienda Ospedaliera Città della Salute e della Scienza
di Torino and the ethics committee of the Università degli
Studi di Trento approved the present research study. All data
was anonymized before analysis.

The data collection protocol was the same for both
reference groups. Each participant was provided with an
Empatica E3 wearable wristband and an iPhone with an
installed agent application capable of recording and securely
transmitting the data to the university server. During the
first interview the participants were instructed on how to
use the wristband and application, and were evaluated by
a psychologist on perceived stress and emotion regulation.
During this interview they also signed an informed consent
for participation.

The Empatica E3 wristband is capable of continuously
recording multiple physiological signals. The goal was to
monitor the participants during their work day. The partic-
ipants wore the wristband everyday from morning (before
leaving for work) till evening (till they returned home). They
periodically answered questions and took notes regarding
their mental state and current activity using the agent ap-
plication.

At the end of the study, there was a counselling session
with the psychologists to assess the adaptation of the protocol
among the subjects, and to ensure the effectiveness of the
study.

III. DATA ANALYSIS AND EXPERIMENTS

The goal of the data analysis is to discover features and
trends from physiological signals which can be used to detect
hypertension in people. While in literature the relationship
between hypertension and blood pressure is well estab-
lished, the detection of essential hypertension from other
physiological signal streams and their fusion has not been
comparatively investigated. Our goal is to design a signal
processing and feature extraction & combination pipeline
which can be applied to this task.

A balanced subset of 8 hypertensive and 8 normotensive
subjects was selected for the experiments with respect to the
completeness of the signals collected. A total of 756 hours
of data from the hypertensive patients and 780 hours from
normotensive control subjects have been analysed.

A. Signal Processing Techniques

The Empatica E3 reports Galvanic Skin Response (GSR)
and Skin Temperature (ST) at 4 Hz, Photoplethysmograph
(PPG) data at 64 Hz, and tri-axial acceleration at 32 Hz. Prior
to any analysis, the signal streams need to be preprocessed
for artifact removal and normalization.

When a subject wears the E3 device, there is initial local
perspiration because of the contact of the device with the

skin. This causes an initial rapid increase in the GSR signal
which requires few minutes to stabilize. The Empatica E3
photoplethysmograph sensor also calibrates itself before it
can start reporting the PPG data. Hence for every session,
we remove the first five minutes. Then for each individual
signal we preprocess it to decrease the amount of noise.
For the GSR and Skin Temperature (ST) we first use a
low pass Butterworth filter. Then we detrend the GSR to
remove the temporal low frequency drift. The Empatica
E3 performs on board signal processing to remove motion
artifacts from the PPG signal [11]. However, we observed
that the reported PPG data still contained certain local motion
artifacts, which conditioned the resulting signal entropy. In
the physiological signal literature, different methods have
been proposed to remove artifacts from PPG data for the
derivation of Blood Volume Pulse (BVP) and Heart Rate
signals. Adaptive filters schemes [12], such as Normalized
Least Mean Square (NLMS) and Recursive Least Square
(RLS) [13], and smoothing algorithms (e.g. Moving average
filters) [14] support the accelerometer subtraction for noise
removal.

Active Noise Cancelation: We process the PPG signal with
the Active Noise Cancelation method as proposed in [15]
to derive a BVP signal. This method consists of a Least-
Mean-Squares (LMS) adaptive algorithm, used to minimize
the error with respect to the desired filter impulse response
coefficients. In this paper we use the same approach as in
[15], and define a 32nd order FIR passband filter as our
desired response defined by [0.5− 5]Hz bandwidth.
Concordantly, we selected a LMS learning rate of µ =
0.0021 based on the maximum glitch and BVP extra beats
attenuation presented in [15].

w(n+ 1) = w(n) + µ
∂[
√
e2(n)]

∂n
(1)

We recursively estimate ω(n) which is the set of co-
efficients for the desired response matching with iteration
index n. LMS receives feedback from e(n) (error between
the current noise cancelation filter mapping and the desired
response), and updates the next iteration based on Equation
1. The Figure 1 shows the block diagram for the Active Noise
Cancellation [15] method.

Due to the lack of a ground truth for the Inter-Beat
Interval (IBI)/Heart Rate (HR) signal for our dataset, we
evaluate the above methodology on the publicly available
TROIKA dataset [16]. This dataset contains a collection of
PPG and Accelerometer data along with ground truth ECG
in an exercise environment. We evaluated this Active Noise
Cancellation and prediction methods on the TROIKA data
and obtained an absolute error of 12.1% and a relative error
rate of 8.9% for Heart Rate estimation.

Consequently we apply this methodology to our dataset
to estimate a continuous Inter-Beat-Interval signal. With
the filtered BVP signal, we detect the R-peaks that are
above 50% of the BVP signal amplitude. For each detected
consecutive R-peak pair, we calculate the time difference
between them and detect any variation along the entire BVP
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Fig. 1: Pipeline for Hypertension prediction from Wearable Devices. We define four different blocks, Active noise Cancellation based on LMS, R-peak
IIBI estimation analyzing the decontaminated PPG, GSR and ST signal conditional and final Classification task stage.

signal. When we detect a new R-peak according to the above
criterion, we update the inferred IBI value. Finally we run a
smoothing spline algorithm to fix the resultant IBI signal and
avoid undesirable harmonics related to IBI discontinuities.
This signal is commonly called interpolated-IBI (IIBI) [14].
We can see both these signals in figure Fig. 2.
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Fig. 2: Example for inferred IBI and Smoothed IIBI.

B. Feature Extraction and Classification

1) Feature Extraction: We experiment with different win-
dow sizes to discover the optimal window for continuous
monitoring of physiological signals and how the performance
varies. Our feature extraction window sizes range from 15
minutes to 2 and a half hours. We extract features from
the preprocessed GSR and Skin Temperature signals, and
the BVP and IIBI signals derived from the PPG data. Here
we discuss the various features extracted from the individual
physiological signal streams.

From the Galvanic Skin Response we extract statistical
features (mean, SD, min and max) for each session. We
also extract the counts of the startle responses (instantaneous
changes in response to external stimuli) of the GSR sig-
nal and their average rise and fall durations. The duration
and amplitude of a the startle response of the Galvanic
Skin Response has been shown to be highly correlated
with sympathetic activation of a person, and its long term
monitoring can be useful in detecting subjects who may be
hypertensive . In total we extract 24 features from the GSR

signal. We further extract 17 more features form the cleaned
Blood Volume Pulse Signal and 8 features from the Skin
Temperature Signal.

From the Interpolated Inter-Beat Interval (IIBI) we extract
17 features from the time and frequency domain. The time
domain features of IIBI are related to the parasympathetic
and sympathetic baroflex function and hence are indicative
of Heart Rate Variability. Hence, we extract the maximum
and minimum of Heart Rate, RMSSD (root mean square of
the successive difference of NN interval), SDNN (Standard
Deviation of the NN interval), pNN50 and pNN30 (percent-
age of consecutive NN intervals which differ by more than 50
and 30 milliseconds respectively). We also derive frequency
domain features as indicated in [17], [18]. These features are
related to the sympathovagal balance index and indicative
of sympathetic and parasympathetic neural activity. We also
extract the ratio of the Low Frequency and High Frequency
values (LF/HF ratio), and the statistical features given by
each frequency range, (e.g. LF and HF: mean, variance, max
and min peaks).

2) Machine Learning: For distinguishing between hyper-
tensive and normotensive subjects, we perform a Leave One
Subject Out (LOSO) cross-validation classification. Since
each test fold contains instances from either a hypertensive
subject or a normotensive subject, we compute the final
global confusion matrix by combining the individual classes
per fold for each subject.

True Positive comprises of all hypertensive subjects clas-
sified as hypertensive. True Negative comprises of all the
normotensive subjects classified as normotensives. False Pos-
itive is all normotensives classified as hypertensives, and all
the hypertensives classified as normotensives makes up the
False Negative class.

We perform classification with both individual and com-
bined signal streams. A feature-level fusion of the different
physiological signal streams is done before running differ-
ent classification tasks. We perform feature normalization
to scale all features to the range [0,1]. We evaluate the
performance of five different classification algorithms: K-
Nearest Neighbours, Naive Bayes, Decision Trees, SVM
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Fig. 3: Effect of the different sampling window sizes (in seconds) for the
Adaboost classifier for different Feature combinations.

with Linear kernel, and two ensemble learning algorithms -
Adaptive boosting and Random Forest. The ensemble based
classifiers outperform the other classifiers for both individual
and fusion of features, with Adaptive Boosting performing
the best. Adaptive Boosting (Adaboost) is a meta-learner
that uses greedy search on a linear combination of weak
classifiers to generate a single composite strong learner. We
use AdaBoostM1 which is a binary classification algorithm.

When considered separately, individual signal streams
have low classification accuracies, with Blood Volume Pulse
having the highest F-measure of 0.62. However, combi-
nation of features of different signal streams significantly
improves the classification results. GSR-IIBI and GSR-BVP-
IIBI combinations providing the best discrimination between
hypertensive and normotensive subjects. We observe that
we are able to achieve a high F-measure of 0.83 using a
combination of features from the BVP, GSR and IIBI signals.

The length of the feature extraction windows as discussed
in section III-B.1, affect the classification results. Classifica-
tion results also improve with increase in the signal window.
We can see this effect in figure Fig 3.

Table I summarizes the best performance results which are
obtained for a 9000 seconds (two and a half hour) window
for the various classifiers.

SIGNAL Adaboost RandomFor SVM
BVP 0.62 0.64 0.59
GSR 0.36 0.44 0.25
IIBI 0.52 0.49 0.33
ST 0.50 0.55 0.53

BVP+GSR 0.52 0.60 0.41
BVP+IIBI 0.63 0.56 0.51
BVP+ST 0.68 0.65 0.59
GSR+IIBI 0.83 0.78 0.59
GSR+ST 0.48 0.41 0.27
IIBI+ST 0.57 0.52 0.50

BVP+GSR+IIBI 0.83 0.72 0.60
BVP+GSR+ ST 0.64 0.53 0.40
BVP+IIBI+ST 0.57 0.57 0.42
GSR+IIBI+ST 0.80 0.71 0.67

GSR+BVP+IIBI+ST 0.81 0.76 0.63

TABLE I: Classification Results (F-measure) for the three best classifiers
for different signal combinations for LOSO evaluation for 9000 seconds (2
and a half hour) window. The best performance for each classifier is marked
in bold.

IV. CONCLUSION

In this study we design and train a complete signal pro-
cessing and classification system for early hypertension pre-
diction by using non-invasive wearable devices. We construct
a robust signal processing methodology for IIBI estimation
under real-life scenarios. We demonstrate that the proposed
computational pipeline which combines several individual
signal streams is able to distinguish between hypertensive
and normotensive subjects with high accuracy.

REFERENCES

[1] W. H. Organization et al., “A global brief on hypertension,” Silent
killer, global public health crisis, p. 40, 2013.

[2] A. S. Jansen, X. Van Nguyen, V. Karpitskiy, T. C. Mettenleiter, and
A. D. Loewy, “Central command neurons of the sympathetic nervous
system: basis of the fight-or-flight response,” Science, vol. 270, no.
5236, pp. 644–646, 1995.

[3] L. Fei, X. Copie, M. Malik, and A. J. Camm, “Short-and long-term
assessment of heart rate variability for risk stratification after acute
myocardial infarction,” The American journal of cardiology, vol. 77,
no. 9, 1996.

[4] “Mybasis,” https://www.mybasis.com/, accessed: 2015-03-30.
[5] “Microsoft band,” http://www.microsoft.com/microsoft-band/en-us,

accessed: 2015-03-30.
[6] “Empatica,” http://www.empatica.com, accessed: 2015-03-30.
[7] R. Picard, O. Devinsky, B. Dworetzky, J. French, D. Friedman, M. Lai,

T. Loddenkemper, M. Poh, C. Reinsberger, R. Sarkis et al., “The
importance of measuring autonomic data in new epilepsy treatments.”

[8] A. Puiatti, S. Mudda, S. Giordano, and O. Mayora, “Smartphone-
centred wearable sensors network for monitoring patients with bipolar
disorder,” in Engineering in Medicine and Biology Society, EMBC,
2011 annual international conference of the IEEE. IEEE, 2011.

[9] M. Rofouei, M. Sinclair, R. Bittner, T. Blank, N. Saw, G. DeJean, and
J. Heffron, “A non-invasive wearable neck-cuff system for real-time
sleep monitoring,” in Body Sensor Networks (BSN), 2011 International
Conference on. IEEE.

[10] F. Shaffer, J. Crawford, and D. Moss, “Bcia launches a heart rate
variability biofeedback certificate of completion,” Biofeedback, vol. 41,
no. 1, pp. 4–6, 2013.

[11] M. Garbarino, M. Lai, D. Bender, R. W. Picard, and S. Tognetti,
“Empatica e3a wearable wireless multi-sensor device for real-time
computerized biofeedback and data acquisition,” in Wireless Mobile
Communication and Healthcare (Mobihealth), 2014 EAI 4th Interna-
tional Conference on. IEEE, 2014, pp. 39–42.

[12] T. Shimazaki, S. Hara, H. Okuhata, H. Nakamura, and T. Kawabata,
“Cancellation of motion artifact induced by exercise for ppg-based
heart rate sensing,” in Engineering in Medicine and Biology Society
(EMBC), 2014 36th Annual International Conference of the IEEE.
IEEE, 2014, pp. 3216–3219.

[13] Z. Zhang, I. Silva, D. Wu, J. Zheng, H. Wu, and W. Wang, “Adaptive
motion artefact reduction in respiration and ecg signals for wearable
healthcare monitoring systems,” Medical & biological engineering &
computing, vol. 52, no. 12, pp. 1019–1030, 2014.

[14] D. McDuff, S. Gontarek, and R. W. Picard, “Remote detection of pho-
toplethysmographic systolic-diastolic peaks using a digital camera,”
Biomedical Engineering IEEE, 2014.

[15] H. Han and J. Kim, “Artifacts in wearable photoplethysmographs
during daily life motions and their reduction with least mean square
based active noise cancellation method,” Computers in biology and
medicine, vol. 42, no. 4, pp. 387–393, 2012.

[16] Z. Zhang, Z. Pi, and B. Liu, “Troika: A general framework for heart
rate monitoring using wrist-type photoplethysmographic (ppg) signals
during intensive physical exercise,” 2014.

[17] W. Handouzi, C. Maaoui, A. Pruski, and A. Moussaoui, “Objective
model assessment for short-term anxiety recognition from blood vol-
ume pulse signal,” Biomedical Signal Processing and Control, vol. 14,
pp. 217–227, 2014.
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