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Abstract— Continuous daily stress and high workload can
have negative effects on individuals’ physical and mental well-
being. It has been shown that physiological signals may support
the prediction of stress and workload. However, previous
research is limited by the low diversity of signals concurring
to such predictive tasks and controlled experimental design.
In this paper we present 1) a pipeline for continuous and
real-life acquisition of physiological and inertial signals 2) a
mobile agent application for on-the-go event annotation and 3)
an end-to-end signal processing and classification system for
stress and workload from diverse signal streams. We study
physiological signals such as Galvanic Skin Response (GSR),
Skin Temperature (ST), Inter Beat Interval (IBI) and Blood
Volume Pulse (BVP) collected using a non-invasive wearable
device; and inertial signals collected from accelerometer and
gyroscope sensors. We combine them with subjects’ inputs
(e.g. event tagging) acquired using the agent application, and
their emotion regulation scores. In our experiments we explore
signal combination and selection techniques for stress and
workload prediction from subjects whose signals have been
recorded continuously during their daily life. The end-to-
end classification system is described for feature extraction,
signal artifact removal, and classification. We show that a
combination of physiological, inertial and user event signals
provides accurate prediction of stress for real-life users and
signals.

I. INTRODUCTION

Continuous high stress and workload can have negative
effects on a person’s physical and mental well-being. It
has been strongly linked to numerous chronic health risks,
such as cardiovascular disease, diabetes mellitus, obesity,
hypertension, and coronary artery disease. It is also a con-
tributory cause for unsuitable human behaviour, failure, and
psychological breakdown among people from different age
groups, professions, and culture, and has become a growing
concern in workplaces around the world. A high level of
stress due to heavy workload has been shown to increase the
level of fatigue [1] among employees and even increase the
risk factors of cancer [2].

While it is easy to identify and understand the source of
physical stress or severe acute psychological stress, subtle
and chronic stress due to continuous workload is more
difficult to detect. Because of this most people are unaware
of the level of stress in their lives. By the time people decide
to seek medical help they are already in the advanced stages
of stress induced exhaustion or are suffering from some
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noticeable ailment. To prevent this, there is a need for early
identification and understanding of stress.

Since the early 1980s psychologists have used validated
questionnaires for detecting stress and workload. Psychoso-
matic medicine often relies on questionnaire-based assess-
ment of perceived stress [3]. Self assessment questionnaires
are also widely used for evaluating stress coping strategies.
Recently, researchers in the field of affective computing have
shown that mobile phones and wearable devices are also
capable of monitoring and measuring the levels of stress
and workload. Mobile phones, along with wearable devices
have turned into guardian angels who can keep watch over
our health and wellbeing by unobtrusively monitoring our
physiological signals. Physiological signals such as galvanic
skin response (GSR), and heart rate variability (HRV) have
been used to recognize stress and workload under different
experimental settings ranging from driving scenarios [4] to
working in an office [5] or a call center [6]. By watching
out for risk factors such as sudden blood pressure drops [7]
or abnormal heart rate [8] they can provide early life saving
warnings.

However, while these physiological measures have shown
promising results in controlled settings, continuous ambula-
tory monitoring in naturalistic settings suffers from a few
challenges: 1) It is important to obtain stress and workload
related annotations for training such a predictive system. This
is difficult under real life situation since stress perception of
an event changes or is often forgotten after a stretch of time;
2) Physiological signals are highly susceptible to noise from
motion and local artifacts; 3) Combining the covert and overt
signals is a complex task.

In this paper we address these problems using a structured
approach for continuous stress and workload monitoring and
feedback elicitation from users. Furthermore, we combine
covert physiological signals with overt information provided
by the users to improve the prediction of stress and workload.
This can be used to create smart agents which can proactively
warn users about their stress and workload states.

In Section II we describe the experimental design, the
platform and protocol for data collection. In Section III
we discuss the data preprocessing, feature extraction and
supervised learning for stress and workload recognition.

II. EXPERIMENTAL DESIGN

This preliminary study was conducted with five healthy
subjects (three males and two females, between ages of 30
and 45) holding regular desk jobs. The subjects were selected
after an initial prescreening interview with a psychologist
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Fig. 1: StressTracker experimental platform including the wristband,
mobile, and web components.

to eliminate the possibility of underlying mental condition
such as hidden hypertension which might confound the study.
The protocol for this research study was approved by the
ethics committee of the Universita degli Studi di Trento.
The subjects were provided with the Italian version of the
emotion regulation questionnaire by Balzarotti et al [9]. It is
a ten-item self-report questionnaire which uses the cognitive
reappraisal and expression suppression scales to evaluate an
individual’s tendency to regulate his or her emotion and
respond to stress.

Emotion regulation refers to the process that individuals
use to feel, express, and control the emotions they experience
in their daily lives [10]. Different individuals use different
emotion regulation strategies which can affect the way they
experience and deal with stress. It has been shown that
individuals who use antecedent-focussed strategies such as
Cognitive Reappraisal, experience and cope with stress dif-
ferently than individuals who use response-focussed strate-
gies like Expression Suppression.

Subsequently, each subject was provided access to the
StressTracker data annotation and acquisition platform. The
platform and protocol is described in the following sections.

A. StressTracker Platform Description

The StressTracker data acquisition and annotation platform
has been developed for continuously tracking, monitoring, vi-
sualizing and annotating stress-related signals. The platform
consists of the following components:

Empatica E3 wristband: The Empatica E3! wristband
is an unobtrusive, wearable, lightweight, wireless, multi-
sensory signal acquisition device. It has four inbuilt sensors
for continuously reporting Galvanic Skin Response (GSR),
Photoplethysmograph (PPG) data, Skin Temperature (ST),
and Tri-Axial Acceleration (ACC). It also reports Inter-Beat
Interval (IBI) at discrete intervals.

StressTracker iPhone Agent: The StressTracker iPhone
Agent was developed as a companion application for the
Empatica E3 wristband. The StressTracker agent is capable
of storing and streaming the physiological signals from the
wristband and the motion sensors from the phone. It also

'www.empatica.com

elicits regular voice and text annotations from the subjects.
The subjects also answered regular questions regarding their
perceived state of stress and workload. Using the Agent
Application, they also reported activities such as smoking,
consumption of alcoholic and caffeinated beverages during
the day.

StressTracker Web Interface: The StressTracker web in-
terface can be used by the psychologist or the subjects to
gain either a realtime or periodic view of both the acquired
signals and the annotations. The web interface has different
access rights depending on the role of the user (psychologist
or subject). A subject is free to edit/update/delete his or her
data or annotation at any time. The physiological signals and
their variations during the day are depicted on a timeline
along with their notes and annotations. These signals and
notes can assist a subject in self reflection to gain a better
understanding of their mental health.

B. Protocol and Data Collection

Each subject wore the Empatica E3 wristband for a period
of seven days (five working days and a weekend) for 8-10
hours every day from morning, till evening. Thrice during
the day (once in the morning, at lunchtime, and at the
end of the day) the subjects used the StressTracker Agent
Application to report their perceived stress and workload
states. The answers were selected from a six-point Likert
scale which ranged from “Very Peaceful” to “Very Stressful”
for perceived stress; and “Completely free” to “Very Busy”
for perceived workload. The subjects were also asked to
take regular text and voice notes annotating activities, and
events such as consumption of alcohol, nicotine and any
other caffeinated beverage during the day. At the end of the
day, they noted a brief textual or verbal description of their
day, and using the online platform, reviewed, added or edited
any information provided.

A total of 206 hours of sensor data was collected. The
subjects annotated 61 instances of reported stress, and 60
instances of reported workload using the app.

ITII. EXPERIMENTS AND RESULTS

In most stress-related studies, workload is taken as the
cognitive demand of the task. In such controlled experiments,
the mental workload is increased by varying task complexity,
and its effect on the stress response of the subject is observed.
Our goal is however, to study and predict stress and workload
individually under naturalistic settings. For our experiments
we observed a low correlation (pearson = 0.58 p-value <
0.05) between perceived stress and perceived workload.

In this section we discuss the initial preprocessing of the
collected data to minimize noise. Then we discuss the feature
extraction and classification experiments.

To detect the stress state and workload of the subject we
need to extract useful information-bearing features from the
different signal streams. We extract and combine features
from the different physiological and inertial sensors on the
Empatica Wristband and iPhone with the personal features
of the subject. The personal features of the subject are the
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classification.

features extracted from the motion profile of the subject,
the emotion regulation questionnaire and the daily subject
feedback.

A. Data Preprocessing

Wrist based physiological sensing devices are affected by
artifacts due to local or gross motion, so they need to be
preprocessed before feature extraction. As a first step we
recognize the activity profile of the subject, then use this for
artifact removal and signal estimation.

Activity Recognition and Artifact Removal - The activ-
ity recognition model is learned using the approach, data and
features of [11]. The authors have shown that by combining
the features of the onboard inertial sensors of a smartphone,
it is possible to make accurate predictions about a subject’s
activity even at low sampling rate. We identify six activities
- Walking, Standing, Sitting, Driving, Travelling by bus, and
Travelling by Train and segment our data with continuous
labels. For every 3 minutes, we take the majority of the
recognized activities and label the 3 minute segments as
belonging to that activity class. We combine the three activity
classes Driving, Travelling by bus, and Travelling by Train
into a single class “commute”. Using this algorithm, for the
collected user data, we recognized 88.5 hours of sitting, 16.6
hours of walking and 20.3 hours of standing and 79.3 hours
of commute. We consider the periods for which the subject
was either walking, sitting or standing for our stress and
workload recognition tasks. We use the duration of commute
to create a daily Activity Profile of the subject. We use
these features later as the personal features. This reduces
the number of motion artifacts arising out of gross body
motions which occur during commute (specially in a bus or
train).

Local fidgeting of the wristband, and motion artifacts
arising out of posture and activity are common sources of
artifacts experienced in a wearable monitoring system. Local
artifacts can be identified by looking for abrupt changes
in the accelerometer which are concurrent with the abrupt
changes in all the physiological signals. When we identify
such segments, we remove the next 30 seconds of the data
from the time of the artifact initiation.

B. Feature Extraction and Machine Learning

Physiological Features - We use the GSR, PPG data,
IBI and skin temperature signals from the Empatica E3
wristband for our stress detection algorithm. The Galvanic
Skin Response (GSR) which refers to the variation in the
electrical properties of the skin due to the action of the
sweat glands, is arguably one of the most useful indicators of
the sympathetic arousal which controls the human “fight-or-
flight response” [12]. The time series of GSR comprises of
two basic components: the Skin Conductance Level (SCL)
which is a slow moving, tonic, habituating background signal
component and the Skin Conductance Response (SCR)
which is a rapid short-lasting change in the GSR caused
mainly due to Neuronal Activity. After removing per subject
baselines and normalizing the GSR values in the [0,1] range,
we extract a total of 24 features from the SCL and SCR.

We smooth the PPG data provided by the Empatica E3
wristband to derive the Blood Volume Pulse (BVP) signal,
and extract 8 statistical features from this BVP signal stream.
The Empatica E3 wristband reports the Inter Beat Interval
(IBI) at a discrete rate. The IBI or the N-N interval, is the
time difference between two normal sinus beats. The heart
rate can be calculated from this signal as HR = 60/IBI.

Heart Rate Variability (HRV) is an important measure
of stress and mental activity of a person. We extract well
explored HRV features such as SDNN (Standard Deviation
of the N-N interval), pNN50 (percentage of consecutive N-
N intervals which differ by more than 50 milliseconds),
RMSSD (root mean square of the successive difference of N-
N interval) [13], [14], [5] among others, extracting a total of
10 features from this IBI signal stream. We extract a further
8 statistical features from the Skin Temperature (ST) signals.

Inertial Sensor Features - The Empatica wristband has
an accelerometer to calculate the tri-axial acceleration. We
also have at our disposal the accelerometer and gyroscope
channels from the iPhone. From each of these channels these
we extract 10 statistical features (including mean, SD, min,
max, number of peaks per minute).

Personal Features - The personal features for each subject
comprise of three sets of features. The first source is the
activity profile of the user. The second set of features is de-
rived from the Emotion Regulation Questionnaire which the

1623



Signal Streams Avg F-measure
BVP 0.74
GSR 0.79
IBI 0.69
ST 0.44
Inertial 0.56
BVP + GSR 0.82
IBI + BVP + GSR 0.89
IBI + BVP + GSR + Inertial 0.82
IBI + BVP + GSR + Personal Features 0.91

TABLE I: Classification results for individual and best combinations
of features for perceived stress using Random Forest Algorithm
with LOSO evaluation.

Signal Streams Avg F-measure
BVP 0.63
GSR 0.44
IBI 0.73
ST 0.37
IBI+BVP 0.69
Inertial 0.72
IBI+Inertial 0.78
IBI + BVP + Inertial 0.71
IBI + Inertial + Personal Features 0.75

TABLE II: Classification results for individual and best combina-
tions of features for perceived workload using Random Forest
algorithm with LOSO evaluation.

subjects had filled in. We calculate the Emotion Suppression
(ES) and Cognitive Reappraisal (CR) scores for each subject.
The third source is the event tagging done by the subjects.
We consider the counts of the beverage, caffeine and alcohol
intake which was reported by the subjects using the agent
application.

Machine Learning - To perform classification, we for-
mulate our daily stress and workload recognition as two
independent binary classification tasks. Stress is classified
into two classes as ‘“Stressed” and “Not Stressed”, and
workload as “High Workload” and “Low Workload”. We
use a “Leave One Subject Out” (LOSO) cross validation
scheme for all classification tasks. We perform classification
on both individual and combined signal streams. For signal
stream combination we perform a feature level fusion of
the physiological features with the features from the activity
profile and the personal features of the subjects.

We use the WEKA implementation of the Random Forests
algorithm for all classification tasks. The Random Forests
algorithm, which was introduced by Breiman in [15], is
an ensemble learning method and is a conglomeration of
tree-based classifiers. The results of classification of the
level of stress and workload are reported in Tables I and II
respectively. We report the classification results for individual
signal streams and the results for the best combinations. We
observe that a combination of physiological and personal
signals give the highest F-measure for the stress classifica-
tion task. Combining the physiological features with person
specific features, we arrive at a high value of F-measure of

0.91. However, adding inertial features leads to a drop in
performance. From Table II we observe that individually,
features extracted from the IBI stream are the best indicators
of perceived workload (0.73). Combining them with the fea-
tures from the inertial sensors provide an improvement (0.78)
in classification performances. The personal features which
were indicative of stress, do not provide any improvement
in the workload classification task.

IV. CONCLUSION AND FUTURE WORK

In this paper we demonstrate a method to continuously
track and measure stress and workload in naturalistic set-
tings which can be deployed for on-the-go acquisition and
monitoring of subjects. We show that the performance of the
combinations of weak signal streams is greater than that of
individual signals for predicting stress and workload.
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