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Introduction
The neural representation of semantic categories is still considered a key question in cognitive neuro-
science. Differences between conceptual representations are detectable in early neural activations
[2], suggesting a specific functional organization of concepts that is reflected in neural responses [4]
(e.g. Tools and Mammals). There is still an incomplete understanding of the early activations as-
sociated with meaningful stimuli, whether pictorial, orthographical or auditory. This limitation is
associated with the low number of signal features in each trial, the limited number of training exam-
ples, and the high level of inter-subject variability.

A reduced inter-class separation (between semantic neural responses) is more evident when the
classification is evaluated independently from the subject or involves single unseen exemplars (e.g.
leave-one-trial-out) [7]. On this specific point, some studies have focused on decoding concept-related
brain activity based on features from the stimulus onset (typically from 0-1200 ms) or a denoised long
EEG trial where the multiple features obtained have non-deterministic distributions.

Main Objectives
1. Improve the semantic class recognition performance, giving early neural responses as a training-set

2. Recreate realistic scenarios such as Cross-Subject:Leave-One-Subject-Out (LOSO), Within-
Subject: 5-Fold per subject (5-Fold), and Leave-One-Trial-Out per subject (LOTO).

3. Use minimum amount of training examples for each evaluation and modality in order to consider
the system independent from extra information.

4. Extend typical Deep Neural Networks (DNN) systems in order to learn fro different features dis-
tributions as Bhattacharyya Distances and PCA [3], showing a considerable performance with a
statistical significance between results in posteriors ROIs.

We propose a powerful combination of Bhattacharyya distance criterion mapping and a Deep Neural
Network (DNN) classifier to improve the performance of concept decoding for within-subject analy-
sis, and a cross-subject analysis. A complete pipeline of this evaluation is shown in detail in Figure
1.

Figure 1: Semantic decoding pipeline and its corresponding subcomponents. The training and test distribution evolves
through each new feature space (PCA and Bhattacharyya), obtaining concentric separation regions at the end of the entire
process

Materials and Methods

Dataset and Experimental Setting
The data had been recorded from seven healthy Italian speakers (5 male and 2 female,mean age
µ = 29), who were asked to silently name animal and tool objects presented in normalized grey-scale
photographs. There were 30 land-mammals and 30 work-tools photographs, each presented times in
random order for each participant, consolidating a total of 180 trials per class, 180 for Tools and 180
Mammals respectively.

More detailed aspects of these recordings are defined in [6] and its supplementary material.
We divided our seven critical Regions-Of-Interest (ROIs) following [5]. Figure 2 shows this distri-

bution in detail.
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Figure 2: Channels distribution per ROI

Analysis
This methodology is composed of 3 main stages. First a pre-processing stage that consists in a mov-
ing average filter application for all the 64 channels in the trial. Second, we split the data compound
in : (a) a leave-one-subject-out (6-to-1 cross-validation), (b) 5-fold cross-validation per each subject
(4-to-1 cross-validation) following the steps proposed in [6] to generalize unseen exemplars for each
semantic category , and (c) an additional LOTO per subject modality in order to extend a generalized
model of the PCA+Bhattacharyya+DNN pipeline.

DNN training

1. Using a PCA and Bhattacharyya distance criterion based on the sequential search, we calculate the
best 20 ranked features for a new feature-set mapping to feed kNN, SVM and DNN (2-layer: 20
input units - 10 hidden units and 2 binomial units for output) classifiers in our evaluations.

2. Each DNN unit is a Restricted Boltzmann Machine (RBM). Thus, we use a pre-training based
on a auto-encoder scheme and unsupervised Contrastive Divergence of 100 iterations [1], using a
εCD = 0.1.

3. Consecutively, we execute 2500 iterations of fine-tunning back propagation to re-calculate the
weights inside the neural network. We use a εfine = 0.01

Results
In these approach we replicate the modalities described by [6], using a cross-subject modality or a
Leave-One-Subject-Out (LOSO), within-subject modality 5-Fold per subject and an extra modality
such as Leave-One-Trial-Out (LOTO) per subject that is not included in this evaluation. Refer to
Table 1 for the baseline and our results based on kNN-20, SVM R=0.1 and DNN 20-10 two layer
classifier.

Figure 3: Time plots for right-posterior and middle anterior Figure (3a) and (3b) responses show a significant region
between [150 − 320] ms respectively, consistent with early visual processes thought to follow early neural responses [4].
Similarly, the scalp plots (Figure (3c)) make evident significant activations around posterior and middle-posterior regions,
especially for P1 and N2 ranges (Note: refer to colorbar scale to identify the potential difference between each scalp plot).

Modalities LOSO 5-Fold per subject LOTO per subject
ROIs kNN-20 SVM R=0.1 DNN 20-10 kNN-20 SVM R=0.1 DNN 20-10 kNN-20 SVM R=0.1 DNN 20-10

Middle-frontal 0.535 0.567 0.731 0.401 0.699 0.782 0.232 0.544 0.687
Left-Anterior 0.532 0.651 0.746 0.443 0.631 0.771 0.351 0.561 0.715
Right-Anterior 0.510 0.583 0.730 0.467 0.681 0.789 0.421 0.589 0.688
Middle-Anterior 0.545 0.657 0.721 0.378 0.674 0.797 0.444 0.621 0.734
Middle-Posterior 0.578 0.527 0.752 0.452 0.731 0.824 0.501 0.666 0.751
Left-Posterior 0.612 0.611 0.744 0.534 0.743 0.834 0.411 0.642 0.633
Right-Posterior 0.624 0.626 0.758 0.452 0.761 0.853 0.455 0.611 0.624
Average 0.562 0.603 0.740 0.447 0.703 0.807 0.402 0.605 0.691
All-ROIs 0.601 0.633 0.751 0.527 0.718 0.838 0.565 0.673 0.744

Table 1: Accuracy average results for LOSO and 5-Fold modalities specified per ROI. Bold+italics values are p < 0.05
based on a t-test inter-classifier comparison. Additionally, we can achieve high performance taking only [0 − 500] ms
ranges.

Conclusions
In this work we developed a novel pipeline for semantic decoding, outstripping the current state-of-
the-art performance, thus validating the semantic-decoding process embedded in neural responses.
Likewise, the performance achieved with these methodology is an open door for new Deep-Learning
systems implementation, especially for semantic decoding and an extended number of semantic-
classes and stimuli modalities.
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