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ABSTRACT

Discourse parsing is an important task in Language Understanding
with applications to human-human and human-machine communi-
cation modeling. However, most of the research has focused on
written text, and parsers heavily rely on syntactic parsers that them-
selves have low performance on dialog data. In our work, we ad-
dress the problem of analyzing the semantic relations between dis-
course units in human-human spoken conversations. In particular,
in this paper we focus on the detection of discourse connectives
which are the predicate of such relations. The discourse relations
are drawn from the Penn Discourse Treebank annotation model and
adapted to a domain-specific Italian human-human spoken conver-
sations. We study the relevance of lexical and acoustic context in
predicting discourse connectives. We observe that both lexical and
acoustic context have mixed effect on the prediction of specific con-
nectives. While the oracle of using lexical and acoustic contex-
tual feature combinations is F1 = 68.53, the lexical context alone
significantly outperforms the baseline by more than 10 points with
F1 = 64.93.

Index Terms— Discourse Analysis, Speech Processing, Ma-
chine Learning

1. INTRODUCTION

Discourse parsing has application in many language technology ar-
eas that have to deal with units of data beyond sentence boundary.
Such applications include Spoken Language Understanding (SLU),
since turn may be composed of several sentences, and Spoken Di-
alog Systems (SDS), where dialog strategies are organized across
several turns [1]. Mainly due to the lack of discourse annotated di-
alog data, most of the research on discourse parsing has focused on
written text; and discourse parsers heavily rely on features extracted
from syntactic parse trees (e.g. [2, 3, 4]). Unfortunately, syntac-
tic parsers trained on written text behave poorly on dialog data [5],
since the latter contain disfluencies and no sentence segmentation.
In this paper we present exploratory experiments on discourse con-
nective detection – initial step in Penn Discourse Treebank (PDTB)
[6] style discourse parsing – in Italian spoken dialogs using acoustic
and lexical features.

In the PDTB corpus, discourse relations are binary: the dis-
course connective and its two arguments Arg1 and Arg2. Arg2 is
syntactically attached to the connective and Arg1 is the other argu-
ment as shown in Example (1) in Figure 1, where Arg2 is in bold
and Arg1 is in italics. Relations signaled by discourse connectives –
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(1) [In questo momento il palazzo non è collegato]Arg1

Allora [è meglio collegarlo]Arg2

([At this moment the building is not connected]Arg1

So [we’d better connect it]Arg2)

(2) Allora vediamo un po’ ecco qua
(So let’s see here it is)

Fig. 1. Examples of allora (so) used as a discourse connective (1)
and as a discourse marker (2).

members of the closed class – are explicit discourse relations. De-
tection of discourse connectives from English text using syntactic
features has a very high performance (F1 = 94.19) [7]. To our
knowledge, this is the first work on the detection of discourse con-
nectives from speech.

Detection of discourse connectives from spoken dialogs is more
challenging than from written text. In addition to the coordination of
non-discourse units and polysemy, which occur both in dialogs and
written text, in spontaneous conversations words that can function
as discourse connectives can also function as discourse markers [8].
While discourse connectives relate discourse units, discourse mark-
ers are used for discourse organization and turn management, e.g.
allora (so) in Example (1) is a discourse connective and in (2) it is a
discourse marker [1]. Our goal is to discriminate between discourse
connective category of a word token and all other usages.

In this paper we cast discourse connective detection as a binary
classification task using lexical and acoustic features. We focus on
the 10 most frequent Italian discourse connectives in the LUNA cor-
pus [9] of human-human spoken conversations. Since our goal is to
explore the relevance of acoustic and lexical context for the task, we
experiment with features extracted from connective candidate spans
and their left and right contexts in the window of ±2 tokens. We
observe that both lexical and acoustic context have mixed effect on
the detection of specific connectives.

The rest of the paper is structured as follows. In Section 2 we
describe the data set used in the experiments, i.e. the Italian LUNA
corpus. Then, in Section 3 we describe data pre-processing and fea-
ture extraction methodologies along with the features used for su-
pervised machine learning. In Section 4 we describe classification
experiments and obtained results. Section 5 provides concluding re-
marks and future directions.

2. DATA SET

The Italian LUNA Human-Human Corpus [9] is a collection of 572
dialogs in the hardware/software help desk domain. A subset of 60



Connective Data Freq.
e (and) 160 15.2%
perchè (because) 138 13.1%
allora (so) 91 8.7%
però (but) 87 8.3%
ma (but) 71 6.7%
quindi (then/so) 69 6.6%
poi (then) 62 5.9%
se (if) 60 5.7%
cosı̀ (so) 33 3.1%
che (that) 25 2.4%
Top 10 796 75.7%
Rest (75) 256 24.3%
Total (85) 1,052 100%

ASR Freq.
154 96.2%
136 98.6%

87 95.6%
86 98.9%
71 100%
67 97.1%
59 95.3%
58 96.7%
31 93.9%
23 92.0%

772 96.3%

Table 1. The 10 most frequent connectives in the LUNA Corpus and
their % from total of explicit relations. ASR Freq. column gives %
of connectives recognized by ASR.

Word 02: Train 03: Test
CONN O CONN O

e 97 43.3% 127 56.7% 40 46.0% 47 54.0%
perchè 81 83.5% 16 16.5% 35 83.3% 7 16.7%
allora 61 16.3% 313 83.7% 20 16.5% 101 83.5%
però 58 89.2% 7 10.8% 14 63.6% 8 36.4%
ma 45 56.3% 35 43.8% 16 55.2% 13 44.8%
quindi 44 57.9% 32 42.1% 17 51.5% 16 48.5%
poi 45 63.4% 26 36.6% 6 37.5% 10 62.5%
se 30 26.5% 83 73.5% 17 36.2% 30 63.8%
cosı̀ 20 44.4% 25 55.6% 7 35.0% 13 65.0%
che 11 3.5% 302 96.5% 12 8.6% 127 91.4%
* 492 33.7% 966 66.3% 184 33.1% 372 66.9%

Table 2. Distribution of the 10 most frequent connectives (CONN)
in training and test sets with the frequencies of their non-discourse
connective usages (O).

dialogs was annotated [1] for discourse relations following Penn Dis-
course Treebank (PDTB) [6] guidelines. Out of total 1,606 annotated
discourse relations, 1,052 are explicit discourse relations, that are
signaled by 85 unique discourse connectives. In this paper we focus
only on the 10 most frequent ones that are listed in Table 1 with their
frequencies in data (Data Freq. column). This set of connectives ac-
counts for 75.7% of all annotated explicit discourse relations. Some
of the listed connectives additionally occur as tokens of other multi-
word connectives (e.g. che is part of visto che). The amount of such
multi-word connectives is 6.2%, most frequent being che (4.5%). To
reduce noise, these multi-word connectives are removed from data.

The data (60 dialogs) is split into training, development and test
splits as 42, 6, and 12 dialogs respectively. The distribution of the se-
lected connectives into training and test sets after data pre-processing
(described in the following Section) is given in Table 2.

3. FEATURE EXTRACTION

In this section we first describe data pre-processing; then feature ex-
traction and the features themselves.

3.1. Data Pre-processing

The discourse annotation of the LUNA corpus was done using text
extracted from manual transcriptions that do not contain word begin-
ning and end time information. Thus, in order to be able to extract
acoustic features for connective candidates, the text is aligned with
the speech signal. The boundaries of words in the speech signal are
obtained using forced alignment between word-level manual tran-
scription and the speech signal within the manually segmented turn
of a dialog. For the forced alignment, we use Automatic Speech
Recognizer (ASR) that was trained on the LUNA Human-Human
corpus using Kaldi [10] with Speaker Adaptive Training (SAT). The
Word Error Rate (WER) of the ASR on the LUNA Human-Human
test set is 39.7%. The ASR system is also used to produce automated
transcriptions of manually segmented turns to match with discourse
connectives in the corpus. Due to the error rate of the ASR, about
3.7% of discourse connectives are not recognized and are removed
from data (see Table 1). After that, forced alignment is used to ex-
tract the features discussed in the following subsection.

3.2. Features

Several sets of features are extracted for supervised machine learn-
ing from the force-aligned ASR output. Lexical features are tokens
and, since we train connective specific models, they appear only as
lexical context features. The difference between manual and ASR
output context tokens is negligible (lower that 0.1%). The rest of the
features used in the experiments is described below.

Duration and Silence Features: The time it took to utter a con-
nective candidate and the duration of pauses before and after it might
also carry information relevant to discourse. Thus, word and silence
durations are extracted from the forced alignment and used as fea-
tures for classification (3 features).

Acoustic Features: Acoustic frame-wise Low-Level Descrip-
tors (LLD) are extracted using openSMILE [11] with the Frame Size
= 25 ms and Frame Step = 10 ms. The extracted LLD are prosodic
features (3) – fundamental frequency (F0), pitch, and loudness, all
with their derivatives (2 per feature) – and spectral features (2) – flux
and centroid (11 LLD in total).

We consider 3 segments – connective candidate token (w) and
its left (l) and right (r) contexts (up to 2 words taken as a single
segment), and acoustic features are extracted for each segment sep-
arately. In each segment, per frame feature values are normalized
by Z-score with speaker-based mean (m̄spk) and its standard devia-
tion (σspk), which are calculated using all the dialog turns of a cor-
responding speaker that do not contain discourse connective candi-
dates. For normalization purposes overlapping turns are considered
as a separate speaker.

Each segment S is later split into three parts – beginning (BS),
middle (MS) and end (ES); and arithmetic mean of all the frame
feature values is calculated for the segment parts: B̄S , M̄S , and ĒS .
As a result, there are 9 values per LLD for a connective candidate:
means of beginning, middle and end parts for a candidate itself and
its right and left contexts. Consequently, each candidate is repre-
sented by 99 acoustic features (11 LLD * 9 parts).

Acoustic Difference Features: In order to capture changes in
the prosody within a word or with respect to context, using the acous-
tic features described above, we generate four acoustic difference
features. For intra-word variation we calculate two differences – be-
tween middle (M̄w) and beginning (B̄w) and between end (Ēw) and
middle (M̄w) parts of the word segment. For cross-word variation,
the computed differences are between beginning part of the word
(B̄w) and the final part of left context (Ēl) and between beginning



M̄wB̄w Ēw B̄rĒl

word, wleft, l right, r

fi,1 = M̄w − B̄w;

fi,2 = Ēw − M̄w;

fi,3 =

{
B̄w − Ēl : l 6= ∅
B̄w − m̄spk : otherwise ;

fi,4 =

{
B̄r − Ēw : r 6= ∅
m̄spk − Ēw : otherwise ;

Fig. 2. Acoustic difference feature generation. Intra-word variation
is represented by features fi,1 and fi,2 and cross-word variation by
fi,3 and fi,4; where i is a Low-Level Descriptor (LLD).

part of the right context (B̄r) and the end part of the word (Ēw). In
case of missing left or right context, the difference is computed with
respect to the speaker mean m̄spk (See Figure 2). The difference
features are computed for each of 11 LLD; consequently, there are
44 difference features in total (11 LDD * 4 differences).

4. EXPERIMENTS AND RESULTS

Our goal is to study the relevance of the lexical and acoustic con-
texts for discourse connective detection from speech. The task is
cast as binary discourse connective vs. all classification using acous-
tic and lexical features. Context is defined as features extracted from
the segments to the left and right of a connective candidate (i.e.
S ∈ {l, r}). Since pauses before and after word are not in the word
segment, they are considered as context.

For classification we use AdaBoost algorithm [12] implemented
in icsiboost [13]. All models are trained on 1,000 iterations, and,
despite the unbalanced nature of our data, we do not apply any bal-
ancing techniques.

We describe four sets of experiments: (1) using acoustic features
from only connective candidate segment (i.e. without context); (2)
using acoustic features from only context segments (i.e. from con-
text); (3) using acoustic features from all the segments (i.e. with
context); and (4) using lexical context in isolation and with acoustic
features. For settings 1-3 we train and evaluate models on the three
sets of features described above – durations, acoustic features, and
acoustic difference features – and their combination through vector
fusion. For setting 4 we fuse lexical context with the fused vectors
from settings 1-3.

Standard precision, recall and F1 are used as evaluation metrics;
however, due to space considerations, we report only F1. We also
compute a micro-averaged F1 for whole connective set and test it
for statistical significance. Statistical significance is measured using
McNemar’s χ2 test with Yates’ correction.

4.1. The Baseline

The baseline of discourse connective detection is computed as a ma-
jority decision. That is, if a word is more frequently appears as a
connective in the training set, it is labeled as such in the test set.
While some connectives have relatively high baselines (e.g. perchè:
F1 = 90.91 and però: F1 = 77.78), the micro-averaged F1 is low
(53.99) since frequent discourse connectives e and allora mostly ap-

Conn. BL
e 0.00
perchè 90.91
allora 0.00
però 77.78
ma 71.11
quindi 68.00
poi 54.55
se 0.00
cosı̀ 0.00
che 0.00
Micro 53.99

D AcN DiffN
11.32 25.71 46.58
88.00 89.19 84.93

0.00 5.71 17.02
77.78 74.29 74.29
68.75 60.00 64.52
61.90 51.28 54.05
47.06 52.63 46.15
21.43 37.50 25.00
28.57 62.50 40.00

0.00 0.00 0.00
50.46 49.86 51.37

ALLN

36.62
83.33
11.76
68.75
64.52
66.67
33.33
38.89
50.00
0.00

51.54

Table 3. F1 of models trained using non-contextual features: dura-
tion (D), acoustic features (AcN ) and intra-word acoustic difference
features (DiffN ) in isolation and in combination (ALLN ). BL is the
majority baseline.

pear in non-discourse roles. For comparison, token only model on
PDTB yields F1 = 75.33 [7].

An alternative to training per connective models is a binary clas-
sification pooling all connectives together. The majority baseline for
models trained using only connective tokens is identical for both set-
tings. In preliminary pooled evaluation, only lexical context features
have produced models outperforming the baseline. Thus, we focus
on connective specific models and evaluate the relevance of acoustic
and lexical context for each connective separately.

4.2. Connective Detection without Acoustic Context

Connective detection without context implies not using features out-
side of the connective candidate time frame; thus, they are word
duration, acoustic features extracted from the word segment and
within-word acoustic difference features, and their combinations.
Results are reported in Table 3. All micro-averaged F1, except for
duration model (D), are significantly lower than the baseline. How-
ever, we observe that all the features contribute to the detection of a
specific connective. Specifically, to the detection of the connectives
mostly having non-discourse usages (i.e. e, allora, se, and cosı̀). Fu-
sion of the features (ALLN ) does not produce the best model for all,
but se.

4.3. Connective Detection from Acoustic Context

Connective detection from context implies using only features ex-
tracted from the left and right context of a connective candidate and
their fusion. Context also includes lexical tokens in the window ±2,
which are evaluated separately. Micro-averaged F1 in Table 4, even
thought often higher, are not significantly different from the base-
line. Neither they are significantly different from the setting without
context. Similar to the setting without context, the acoustic con-
text features do contribute to the detection of the connectives mostly
having non-discourse usages; however, they also contribute to the
detection of others. Fusion of the features (ALLC ) does not produce
the best model for all, but cosı̀.

4.4. Connective Detection with Acoustic Context

Connective detection with context implies that we can use all the
features. Micro-averaged F1 in Table 5 are not significantly differ-
ent from either baseline or the previous settings, for all but acoustic



Conn. BL
e 0.00
perchè 90.91
allora 0.00
però 77.78
ma 71.11
quindi 68.00
poi 54.55
se 0.00
cosı̀ 0.00
che 0.00
Micro 53.99

S AcC DiffC
36.92 56.47 48.84
89.19 91.89 80.00

0.00 15.38 19.35
77.78 87.50 74.29
71.43 55.56 62.50
68.09 48.48 70.97
54.55 47.06 15.38

0.00 33.33 33.33
0.00 42.11 53.33
0.00 0.00 11.11

55.49 56.45 53.41

ALLC

43.04
90.67
13.79
77.78
58.82
64.52
37.50
22.22
58.82

0.00
55.06

Table 4. F1 of models trained on only acoustic contextual fea-
tures: silence durations (S), acoustic features from context (AcC ),
and cross-word acoustic difference (DiffC ) in isolation and in com-
bination (ALLC ). BL is the majority baseline.

Conn. BL
e 0.00
perchè 90.91
allora 0.00
però 77.78
ma 71.11
quindi 68.00
poi 54.55
se 0.00
cosı̀ 0.00
che 0.00
Micro 53.99

DS Ac Diff
33.85 48.00 36.62
84.93 89.47 84.06

0.00 17.65 18.75
74.29 77.78 76.47
76.47 68.57 77.78
61.11 60.61 64.52
47.06 66.67 50.00
10.00 42.86 18.18
28.57 52.63 50.00

0.00 0.00 13.33
52.12 58.95 53.33

ALL
32.43
90.67

7.69
74.29
62.50
70.27
40.00
14.81
53.33

0.00
52.87

Table 5. F1 of models trained on both contextual and non-contextual
features: word and silence durations (DS), all acoustic features (Ac),
all acoustic difference features (Diff), and their vector fusion (ALL).
BL is the majority baseline.

features: F1 for all acoustic features (Ac) is significantly higher than
for the models without context (AcC ). Similar to the previous set-
tings, there are individual contributions to specific connectives and
the fusion produces the best model only for cosı̀.

4.5. Connective Detection with Lexical Context

In this setting we evaluate the relevance of lexical context in isolation
and through vector fusion with all speech derived features (durations,
acoustic and acoustic difference) in the previous three settings. The
lexical context is tokens in the window of ±1 or ±2 tokens. Results
are reported in Table 6 (for space considerations we report only ±1
window performance). The micro-averaged F1 for lexical context
in the window of ±1 tokens performs significantly better than the
baseline, while in the window of ±2 is not. Thus, ±1 window is
used for vector fusion with other features.

The addition of lexical context to the speech-derived features
does not produce significant changes to micro-averaged F1. All
acoustic-lexical models are not significantly different from the base-
line or their equivalents without lexical context. The lexical context
model with ±1 token window is significantly better than the rest.

However, we again observe that individual connective perfor-
mances are boosted. For connectives allora, quindi and se the fusion
of acoustic features with lexical context produces the best results. In
order to estimate the upper bound of the model combination (which

Conn. BL
e 0.00
perchè 90.91
allora 0.00
però 77.78
ma 71.11
quindi 68.00
poi 54.55
se 0.00
cosı̀ 0.00
che 0.00
Micro 53.99

L1

57.97
91.89
16.67
66.67
78.05
44.44
57.14
40.00
66.67
86.96
64.93

ALLN ALLC ALL
39.47 39.02 37.84
87.67 87.67 90.67
14.29 31.25 7.69
72.73 77.78 74.29
55.17 50.00 66.67
66.67 66.67 74.29
33.33 28.57 40.00
47.06 23.08 20.69
50.00 66.67 42.86

0.00 0.00 0.00
54.29 54.08 54.60

O
57.97
91.89
31.25
87.70
78.05
74.29
66.67
47.06
66.67
86.96
68.53

Table 6. F1 of models trained on using lexical context in the win-
dow of ±1 tokens (L1) in isolation and in combination with other
features: acoustic features without context (ALLN ), acoustic fea-
tures from context (ALLC ), and all acoustic features (ALL). BL is
the majority baseline and O is the oracle of the best performing con-
nective specific models.

could be achieved using features selection on the development set)
we calculate the oracle of the best models per connective (O). The
micro-averaged F1 of the oracle is 68.53.

Overall, we observe that connectives behave differently with re-
spect to acoustic and lexical context. Half of the connectives (e,
perchè, ma, che, cosı̀) achieve the best results using only lexical
context. The rest is quite diverse: se using lexical, but not acoustic
context; allora using lexical and acoustic context without the fea-
tures from the word segment, quindi using both lexical and acoustic
contexts with the features from the word segment. The remaining
two connectives poi and però perform better without lexical con-
text: però using just acoustic features from context and poi using all
the acoustic features; no acoustic difference or duration features for
both.

All these differences lead us to conclude that discourse connec-
tives are not uniform and different features are required to distin-
guish them from their non-discourse connective usages.

5. CONCLUSION

In this paper we have addressed the task of discourse connective
detection from speech. We have focused on the relevance of lexi-
cal and acoustic context in discriminating the 10 most frequent dis-
course connectives from their non-discourse usages. We have ob-
served that both lexical and acoustic context have mixed effect on
the task. While lexical context model significantly outperforms the
baseline with F1 = 64.93, the oracle of combination with acoustic
context has F1 = 68.53. The conclusion is that the task of discourse
connective detection is hard, but lexical features provide enough dis-
criminative power to get improvement of more than 10 points over
the majority baseline.

The future directions of this work are to investigate whether the
reported observations are a property of Italian or spontaneous dialog.
Given the oracle performance, data balancing and automatic features
selection techniques may boost the overall performance.
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