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ABSTRACT
Face-based and audio-based emotion recognition modalities have
been studied profusely obtaining successful classi�cation rates for
arousal/valence levels and multiple emotion categories se�ings.
However, recent studies only focus their a�ention on classifying dis-
crete emotion categories with a single image representation and/or
a single set of audio feature descriptors. Face-based emotion recog-
nition systems use a single image channel representations such as
principal-components-analysis whitening, isotropic smoothing, or
ZCA whitening. Similarly, audio emotion recognition systems use
a standardized set of audio descriptors, including only averaged
Mel-Frequency Cepstral coe�cients. Both approaches imply the
inclusion of decision-fusion modalities to compensate the limited
feature separability and achieve high classi�cation rates. In this pa-
per, we propose two new methodologies for enhancing face-based
and audio-based emotion recognition based on a single classi�er
decision and using the EU Emotion Stimulus dataset: (1) A combi-
nation of a Convolutional Neural Networks for frame-level feature
extraction with a k-Nearest Neighbors classi�er for the subsequent
frame-level aggregation and video-level classi�cation, and (2) a shal-
low Restricted Boltzmann Machine network for arousal/valence
classi�cation.
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1 INTRODUCTION
Emotions and complex mental states have been studied through dif-
ferent image-based and audio-based modalities achieving important
milestones in emotion recognition state-of-the-art [19].
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Facial features are considered to be an informative channel for
the recognition of Ekman’s six basic emotions [6] (angry, afraid,
happy, sad, disgusted, and surprised with their corresponding ap-
praisal mechanisms); thus, they are considered an important refer-
ence point for multiple other facial feature-based emotion recogni-
tion systems [15]. �ese particular studies include facial features
such as Facial Action Coding System (FACS) [4], non-linear image
kernel models [25], and Convolution Neural Networks (ConvNets)
probabilities [7, 14].

Likewise, recent studies such as Emonets [8] and [5] (winner of
the ICMI 2013 emotion recognition challenge) use ConvNets to dis-
criminate sets of isotropic image’s patches from a�ective faces; thus
extending the classi�cation paradigm for frame-level and video-
level annotation. However, studies that involve ConvNets and
multiple emotion categories tend to use a single face representation
(e.g. PCA, isotropic smoothing) limiting the feature space in the
frame aggregation and the subsequent video-level classi�cation.
On the other hand, audio features such as low-level audio descrip-
tors (LLD) are considered a primary score for understanding the
emotion implied in a�ective dyadic interactions [3]. Fundamental
frequency (F0), Mel-Frequency Cepstral Coe�cients (MFCC), Ji�er
and the percentages of pauses are considered important features
for describing prosodical cues and the related a�ective u�erance
[24]. However, the multilingual variability and the considerable
limitation for extracting signi�cant features from unimodal au-
dio instances/u�erances are considered critical drawbacks for the
classi�cation of multiple a�ective categories.

Despite the emotion recognition systems have included facial and
audio features in an separated or a synchronized modalities increas-
ing classi�cation rates, some image normalization models such as
ZCA whitening and PCA are not included for face-based modalities,
and low-level feature sets and descriptors such as Zero-Crossing
Rate or the quartile and interquartile ranges of the low-level descrip-
tors for audio-based modalities; thus constraining their evaluation
to small set of emotion categories and limiting the inter-classes
separability. �ese drawbacks imply the combination of multiple
classi�ers’ decision (e.g. DBN, ConvNet, RBM, Auto-encoder) to
achieve a considerable emotion recognition rate [12, 23].

In this paper, we propose two pipelines for face and audio emo-
tion classi�cation using a single classi�er decision and without
including any type of decision-fusion modality: (1) A face-based
emotion recognition using the facial contours detected by dlib for
face alignment, and a combination of the ConvNets described by
[9] and a subsequent frame aggregation (video-level) classi�cation
using k-Nearest Neighbor (kNN) or two-layer Restricted Boltzmann



Machine (RBM) classi�er. (2) An audio-based emotion recognition
using low-level descriptors extracted from multiple speech signal
excerpts to feed the two-layer RBM network classi�er. We use the
video and audio data from EU-emotion Stimulus dataset – a set of
emotion stimuli designed for understanding complex emotions in
Asperger Condition (ASC) populations. In this study we report the
performances of kNN and RBM classi�ers predicting the six basic
Ekman’s emotions and neutral for face-based classi�cation, and the
performances of kNN and RBM classi�ers for separate high/low
levels of arousal and valence classes respectively.

2 EU-EMOTION STIMULUS DATASET
�e EU-emotion Stimulus (EESS) dataset presented by O’Reilly
et. al [13] is an induced stimuli dataset developed for understand
complex emotion elicitation and the subsequent neurophysiological
responses in ASC patients. EESS was collected as a part of the
ASC-Inclusion project www.ascinclusion.eu. EESS consists of a set
facial expressions, voices, and body gestures that are annotated
using 20 di�erent emotion/mental state labels such as afraid, angry,
ashamed, bored, disappointed, disgusted, excited, frustrated, happy,
hurt, interested, jealous, joking, kind, proud, sad, sneaky, surprised,
unfriendly, and worried plus an extra neutral category.

Emotions were enacted by 17 di�erent actors of 5 di�erent eth-
nicities. Each actor only portrayed 10 di�erent emotions: two
subsets of 3 basic emotions (Ekman’s emotions) and 7 additional
complex emotions that were evenly assigned to the actors. On the
other hand, the vocal emotional expressions were represented by
prepared scripts assigned for each particular emotion individually.
Each actor used di�erent scripts to portray low and high intensity
for the 6 basic emotions angry, afraid, happy, sad, disgusted, and
surprised for both video and audio.

�e data was annotated using 14 online surveys representing a to-
tal of 1431 responses. Only six out of these 14 surveys were used for
annotation, each micro-task consisted of 15-30 stimuli. Annotators
gave responses for 3 di�erent tasks: recognition, emotion impression
(valence and arousal), and intensity. Final results for emotion recog-
nition were expressed in chance-corrected scores, a 63% represent
the overall chance-corrected data for the 20 emotion/mental states
plus neutral.

In our experiments, we use the EESS UK English subset of data
and only the six Ekman’s basic emotion labels. Table 1 gives the
number of instances, video frames and time-length for each modal-
ity – face and vocal expressions – for each EESS emotion/mental
state included in this study.

3 METHODOLOGY
Table 1 shows the facial and the vocal expression contents of EESS:
the number of videos (# Vid.), the corresponding number of frames
for all videos (# Fra.), and the total time-length of the videos (Tvid
[s]) per emotion. �e number of instances/u�erances (# Inst.), the
corresponding 25ms speech segments contained in all the instances
(# Segm.), and the total time-length of the u�erances (T [s]). In
summary, the total number of video frames and speech segments
are 26638 for faces and 14859 for audio respectively, however, in
our study we only include the six basic emotion categories such
as angry, afraid, happy, sad, disgusted, surprised and neutral for

Table 1: EESS contents for facial expressions and voices.
Contents for all the 21 emotions/mental states are speci�ed
aswell as the number of frames and audio segments for face-
based and audio-based pipelines respectively. (Disapp.) is
the abbreviation of Disappointed, and (Unfriend.) the abbre-
viation of Unfriendly

Emotion/
Mental
States

Facial Expressions Voices

# Vid. # Fra. Tvid [s] # Inst. # Segm. T [s]
Afraid 7 1255 46 31 510 12.7
Angry 7 1016 38.3 35 1032 25.8
Ashamed 8 660 26.4 26 496 12.4
Bored 8 1458 52.6 31 800 20
Disapp. 6 522 20 21 758 18.9
Disgusted 9 1345 49.1 29 575 14.3
Excited 7 1051 38.8 31 665 16.6
Frustrated 7 1159 43.1 26 840 21
Happy 8 1166 43.3 38 1031 25.7
Hurt 6 422 16.9 22 603 15.1
Interested 6 643 25.2 32 931 23.3
Jealous 7 1382 50.3 21 441 11.1
Joking 7 1141 42 28 620 15.5
Kind 9 1394 52.2 31 724 18.1
Proud 8 1076 61.3 29 332 8.3
Sad 8 1254 40.9 31 824 20.6
Sneaky 7 1053 46.8 27 502 12.5
Surprised 8 884 39.5 24 598 14.9
Unfriend. 8 1005 34.5 24 747 18.6
Worried 8 1687 38.5 20 703 17.6
Neutral 16 2153 81.9 29 1127 28.2
TOTAL 165 26638 887.9 586 14859 371.5

being consistent with the baseline. A total of 63 videos composed
of 9073 frames, and 193 instances composed of 5697 audio segments
composed our evaluation subset, grouping the audio segments in
high/low arousal valence levels for audio-based as we explain below.
We exclude all the frames and audio instances that belong to low
intensity emotion categories.

In the following subsections we explain the details of the face-
based and audio-based emotion recognition systems, evaluating
our performances with a 5-fold cross-validation and comparing our
pipelines to the top current state-of-the-art systems.

3.1 Face-based
RGB images were extracted from each EESS video with an initial
resolution of 1440×1080. Each EESS video was resampled to 30
fps using �mpeg, and each of these frames contains the �gure
of a single actor standing in front of camera and portraying the
corresponding emotion.�erefore, we applied a haarcascade alt-
tree classi�er through openCV to detect frontal faces [11] that
guarantees a minimum of 40% of continuous face detection rate in
our tests.

Figure 1a shows the RGB image with the face inclosed in a
green rectangle. Table 1 shows the number of valid frames with
detected faces per emotion. Our experiments for face-based emotion
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recognition are (1) an evaluation of the ConvNets model described
by Kahou et. al [9] using a ZCA whitening normalization (Figure
1b), and a KNN and a shallow RBM classi�er evaluation for the
frame-aggregation task, (2) a similar analysis but using the dlib
landmarks (Figure 1c) as input, and (3) a baseline replication of
by Kahou et. al [9] using the isotropic smoothing extracted from
INline image toolbox [22], and the radial basis function (RBF) SVM
for the frame-aggregation and subsequent video-classi�cation.

(a) Face Detected using openCVs (b) ZCAwhite image (c) dlib face contour

Figure 1: Afraid face in 1a color RGB image, 1b ZCAwhite
representation, and 1c dlib landmark contours representa-
tion

3.1.1 ZCAWhitening. ZCA whitening is a linear transformation
derived by a PCA whitening process plus a zero mean subtraction
per image or a set of random cropped images for feeding deep neural
network schemes [2]. First, the image is cropped around the green
rectangle and it is transformed to 100×100 gray-scale using pixel-
averaging. Subsequently, we subtract the amplitude mean for each
image row and calculate the image covariance matrix described by
Σ = XXT with X as the gray-scale image. To implement the PCA
we developed a single value decomposition for non-singular Σ and
then with these eigenvectors matrix S we calculate the ZCAwhite
following Equation 1

ZCAwhite = λtr

(
1√

(tr (S) + ϵ)

)
ΣλTX (1)

We set a fudge factor ϵ = 0.1 for avoiding an extra blurring level in
the resulting image, thus obtaining a similar representation shown
in Figure 1b. λ is the rotation for the covariance matrix singular
value decomposition. �e resulting faces were giving as input to
the ConvNets using an a-priori cropping and �ipping as we explain
below.

3.1.2 dlib Face contour landmarks. 100×100 Color images were
either processed using an openCV library extension dlib [16] for
e�cient face contours detection and head pose alignment. Dlib
library uses a Histogram of Oriented Gradients (HOG) and a Lin-
ear SVM classi�er to infer the position of 68 x-y landmark points
distributed among the allocated face [10].

�ese landmark points are concatenated and overlayed in the
color image as Figure 1a shows. To extract and preserve only the
black contour from the subsequent gray-scale image we applied a
amplitude mask saturating any pixel that has a value above 2, thus
obtaining a representation shown in Figure 1c. In this particular

case, we use the dlib contours for two purposes: First, we use
the landmarks to align the faces using the eyes center similar to
[27]. ZCAwhite and isotropic smoothing images were both aligned
before the frame-level training. Second, we use the representation
from Figure 1c as an input for the ConvNets normalizing the images
from uint8 to double. Previous implementations [26] have proposed
the evaluation and detection of face landmarks using ConvNets
a-priori, in our particular case we use dlib landmarks as auxiliary
features in the analysis in order to explore how the frame-level and
video-level accuracies are correlated with the dlib landmarks as
features.

3.1.3 Frame-level Classification: ConvNets. Each image repre-
sentation ZCA, dlib, and isotropic are resized from 100×100 to
48×48 for being consistent with the input dimensionality expected
by the Kahou et. al [9] ConvNets. �e ConvNets architecture is
shown in Figure 2. �ere the input image is decomposed from a
48×48 to a 5×5 resolution.

We follow the model and the parameters established by Emonets
[8] with some changes. �e size of each convolutional �lter and
the max/average pooling was set in 5×5. �e �rst section of the
ConvNets is composed of 64 �lters except for the last section of
convolution and pooling that is connected with the so�max layer
composed of 128 �lters. �is ConvNets was trained with a learning
rate of 0.0003 for modifying �lters weights and biases, and a weight
decay per epoch equal to 0.004. All the convolutional+pooling
blocks have ReLU activation function layers as outputs.

�e frame-level training task starts with the cropping and hor-
izontal �ipping of all the training face images. Speci�cally, the
48×48 input image is cropped in a �ipped 40×40 random patch per
epoch being consistent with the same random patch among the
training batches.

Each fold in the cross-validation (5-Fold) includes only the frames
that belong to a particular EESS video, in this experiment we did
not include any extra dataset for training, thus each test set is
composed of the frames of a particular video without any overlap
with the other folds belonging to the training set; thus assuring the
consistency with the EESS video annotation.

We set the maximum number of training epochs to 200 for each
cross-validation, however we set an early-stopping when the train-
ing error in the frame-level is below 5% and the video-level accuracy
for the test is set above 50%. For the frame-aggregation (refer sec-
tion 3.1.4) we group the probabilities in output of the so�max layer
per epoch.

�e frame-level performances reported below such as top5err,
top1err, F1, and accuracy are evaluated per training epoch and
averaged for all the 5 folds.

3.1.4 Frame-Aggregation: Video-Classification. �e frame-aggre-
gation is similar to the process established by Kahou et. al [9]. For
each training epoch the probabilities calculated by the so�max layer
were grouped in 10 bins for the training and the test set.

�ese probability groups are sorted depending on the order of the
frames in the corresponding video. �us, per video and per batch
we average the seven corresponding probabilities scores obtaining
70 features per each video at the end of the ConvNets.

Our main contribution in the frame-aggregation is changing the
radial kernel SVM described in the baseline system to a kNN or a
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Figure 2: Block diagram of the face-based emotion recognition pipeline. Input image is transformed �rst to gray-scale repre-
sentation to reduce RGB channels from 3 to 1. Subsequently, each detected face-image was resized to 48x48 and normalized
using ZCA whitening. �e ZCAwhite image is cropped in 40x40 random patches per each training epoch and �ipped horizon-
tally before it is given as an input in the Kahou et. al [9] ConvNet. �us, before video-level classi�cation we extract the seven
probabilities scores assigned for each emotion category + neutral, averaging the scores in 10 groups of frames per video.

two-layer RBM network classi�ers. Speci�cally, we set the number
of nearest-neighbors to 1; thus referring to this particular classi�er
as KNN-1.

On the other hand, the RBM is a 20-100 fully-connected greedy
network with sigmoid activation functions. We train the classi�er
following [1] with 10 epochs of Contrastive Divergence (CD-1) pre-
training and 200 iterations of �ne-tunning. For the pre-training we
use a �xed learning rate of 0.1, and for the �ne-tunning we start the
initial learning rate in 0.2 using a rate decay of 0.001 per training
epoch.

�e video-level predicted labels are obtained through a so�max
output layer in the case of the RBM, and the inferred index group
for the KNN-1. Figure 2 shows the video-level classi�cation block
at the end of block diagram.

3.2 Audio-based
Audio-based pipeline is composed of the following steps: Each .mp3
�le in the EESS repository were transformed to .wav using �mpeg.
�e sampling frequency and the bits per sample were preserved
for each �le being 44 kHz and 16 respectively. Figure 3 shows the
complete block diagram of the audio-based emotion recognition
pipeline.

3.2.1 Audio Descriptors: Feature Sets. We use openSMILE for
extracting and concatenate four di�erent features set per voice
instance: (1) �e �rst feature set is calculated from prosodicAcf.conf
�le. �is feature set is composed of the voice probability, the F0
value calculated from cepstrum, and the loudness value estimation.
(2) A set extracted using the MFCC12 E D A.conf �le. �is set is
composed of 36 MFCC features such as 12 general MFCC coe�-
cients calculated from 12 Mel-bands, other 12 delta coe�cients,
and other 12 calculated by the acceleration method. (3) �e Inter-
speech 2009 Emotion Challenge feature set [18] described in the
IS09 emotion.conf. �is set is composed of 384 features including

basic stats (e.g. max, min, skewness, stddev, kurtosis) and contour
slopes from 12 smoothed low level descriptors calculated for each in-
stance/u�erance. (4) �e acoustic descriptors from the emobase.conf
set including some features such as amplitude max/min, range,
arithmetic mean, linear regression coe�cients, linear and quadratic
errors, standard deviation, skewness, kurtosis, quartile 1-3, and 3
inter-quartile ranges. We exclude the features that are in common
between the sets.

�e �nal feature set is composed of 1230 features as a result
of concatenating all the features described above. �e �nal fea-
ture vector is obtained averaging the low-level features calculated
among the 25ms audio segments (10ms overlap) indicated in the
Table 1 per instance.

To evaluate our tests in the instance level classi�cation we used
the baseline proposed by Sagha et. al [17], speci�cally the EESS
english modality in which only the Interspeech 2009 Emotion Chal-
lenge feature set was included.

3.2.2 Instance Level Classification: RBM/kNN. In this evaluation
we work consistently with audio instance/u�erance annotation. 193
voice instances were labeled with Ekman’s basic emotions as we
explained above. We assign these seven labels among the high/low
arousal/valence levels following the baseline Sagha et. al [17] and
the re-mapping of the circumplex axis denoted as the Geneva wheel
[20].

Sagha et. al assigned EESS basic emotions labels such as angry,
afraid, disgusted and sad to the negative (low) valence level, and
happy, surprised, and neutral to positive (high) valence. Likewise,
afraid, sad, neutral and disgusted were assigned to negative (low)
arousal level, angry, happy, and surprised were assigned to positive
(high) arousal.

Figure 3 shows the two classi�ers for the audio instance-level
classi�cation: A 50-50 two-layer RBM with sigmoidal activation
functions and a so�max output layer. �is RBM classi�er is trained
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Figure 3: Block diagram of the audio-based emotion recognition pipeline. Input instance/utterance is segmented in 25ms
length 10ms overlap. For each audio segmentwe extracted the prosodicAcf, MFCC12 E D A, IS09 emotion, and emobase features
set, averaging the low-level descriptors per instance and feeding the RBM 50-50 and KNN-10 classi�ers for the instance-level
classi�cation.

with 10 CD-1 pre-training epochs and a �xed learning rate of 0.01,
and a 1200 �ne-tunning iterations with a initial learning rate of 0.1
and a rate decay of 0.05 per epoch. We normalize the instances for
the RBM classi�er training based on Equation 2 in which Xk is the
instance/example kth .

Xnorm
k =

Xk −min(Xk )

max(Xk ) −min(Xk )
(2)

On the other hand, we set a kNN classi�er with 10 nearest neigh-
bors (KNN-10). �e baseline classi�er is a SVM linear kernel as
Sagha et. al [17] describe. We evaluate the performance of these
classi�ers in a 5-Fold cross-validation modality.

4 RESULTS
�e face-based and audio-based emotion recognition pipelines are
evaluated using a 5-Fold cross-validation. As we mentioned above,
both the frame-level classi�cation and video-level classi�cation
for the face-based pipeline are evaluated using the 5-fold cross-
validation at the end of the training or when the early-stopping
criterion is met.

4.1 Face-based
Average frame-level and video-level performances are shown in
Tables 3 and 2 respectively. �e performances for the frame-level
are evaluating using the Accuracy (Acc.) to avoid the incidence of 0
true positives in precision and recall scores for certain classes such
as surprised and disgusted with few face detected frames. Accuracy
values are calculated for video-level classi�cation. Precision (Pr),
Recall (Re), and F1 scores are reported in the confusion matrices of
Figures 6 and 7.

Changing the input representations such as ZCAwhite and dlib
shows an increased accuracy in comparison to the isotropic smooth-
ing baseline in the video-level classi�cation. Likewise, changing
the classi�er from RBF SVM to RBM 20-100 and/or KNN-1 shows
an increase in accuracy; thus supporting that changing the separa-
bility of image features is an important step for obtaining a be�er
emotion recognition rate in a multi-class data.

Speci�cally, the KNN-1 classi�er obtains the best video-level
performance for both representations – ZCAwhite and dlib. Some
di�erences are observed for the dlib performances in Figures 7a, 7b,
and 7c. �e confusion matrices for dlib representation including the
KNN-1 results are more unbalanced in comparison to ZCAwhite
(see Figures 6a, 6b, and 6c). A clear evidence of this measure is given
by the increased di�erence between the Precision and Recall values
in dlib confusion matrices in comparison to the ZCAwhite . �is
suggests that the multiple PCA eigenvalues extracted from a gray-
scale image as a whole are more discriminant than the equivalent
representation from the face contour landmarks only. �ese results
can be also supported with the considerable di�erences between
Precision and Recall values for dlib confusion matrices that are not
presented in the ZCAwhite case.

Surprisingly, the dlib representation yields slightly be�er perfor-
mance for the frame-level classi�cation in comparison toZCAwhite ,
as can be observed in Table 3. We do not �nd any signi�cant di�er-
ences between the new representation and the baseline; however,
for all the cases RBM 20-100 and KNN-1 are outperforming the
baseline methodology.

Top1errors and top5errors for frame-level classi�cation are re-
ported in Figure 4. Baseline system errors show increased values in
comparison with dlib and ZCAwhite errors, being consistent with
confusion matrices shown in Figures 6 and 7. Confusion matrices
for baseline methodology using the isotropic smoothing are shown
in Figures 5a, 5b, and 5c.

Table 2: Video-level average accuracies for the 5-fold cross-
validation. Accuracies are calculated with a sum o� all the
member of diagonal over the sum of all the members of ma-
trix for each fold. Results in italics represent the Kahou et.
al baseline [9]

Video-Level ZCAwhite dlib Isotropic
SVM RBF 0.482±0.022 0.511±0.022 0.309±0.172

RBM 20-100 0.534±0.022 0.534±0.032 0.334±0.125
KNN-1 0.541±0.137 0.537±0.153 0.473±0.051
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(a) SVM RBF Acc=0.3756, Pr=0.3812, Re=0.3731, F1=0.3792
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(b) RBM, Acc=0.4012,Pr=0.4020,Re=0.3914,F1=0.3999
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(c) KNN-1, Acc=0.4211, Pr=0.4001, Re=0.4131 F1=0.4045

Figure 5: Confusion matrices for Isotropic smoothing input representation and video-level classi�cation: Figure 6a shows the
confusion matrix for the SVM RBF classi�er similar to baseline Kahou et. al [9], Figure 6b shows the confusion matrix for
RBM 20-100 classi�er, and 6c the confusion matrix for KNN-1. �e numbers labeled for each cell of these confusion matrices
represent the number of videos that are predicted as the emotion category in the y-axis giving by the real emotion category
in the x-axis.

Table 3: Frame-level average accuracies for the 5-fold cross-
validation calculated a�er the so�max layer in the output of
the ConvNet. A so�maxloss operator was used to infer the
�nal label per frame. Results with italics font represent the
Kahou et. al baseline [9]

Frame-Level ZCAwhite dlib Isotropic
Acc 0.401±0.158 0.431±0.095 0.312±0.131

4.2 Audio-based
�e average audio-based classi�cation results are shown in Table 4.
We report Acc, Pr, Re, F1 score values for all the classi�ers explained
above: �e linear SVM proposed by the baseline, the two layer RBM
50-50, and the KNN-10. Results show that using a type of classi�er
such as RBM 50-50 and/or KNN-10 is more accurate than using
linear kernel SVM. For both arousal and valence high/low levels
classi�cations, the RBM 50-50 shows an increased and signi�cantly
be�er performances (Pr, Re, and Acc) in comparison to the baseline
and KNN-10 classi�er. As we expected, valence high/low level
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(b) RBM, Acc=0.4828,Pr=0.4524,Re=0.4848,F1=0.4680
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(c) KNN-1, Acc=0.5345, Pr=0.5636, Re=0.5497, F1=0.5565

Figure 6: Confusion matrices for ZCAwhite input representation and video-level classi�cation: Figure 6a shows the confusion
matrix for the SVMRBF classi�er, Figure 6b shows the confusionmatrix for RBM20-100 classi�er, and 6c the confusionmatrix
for KNN-1.
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(a) SVM Acc=0.5101, Pr=0.5234, Re=0.4758, F1=0.4958
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(b) RBM, Acc=0.5345, Pr=0.5437, Re=0.5281, F1=0.5358
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(c) KNN-1, Acc=0.5345, Pr=0.6604, Re=0.4889, F1=0.5610

Figure 7: Confusion matrices for dlib contour input representation and video-level classi�cation: Figure 7a shows the confu-
sion matrix for the SVM RBF classi�er, Figure 7b shows the confusion matrix for RBM 20-100 classi�er, and 7c the confusion
matrix for KNN-1.

Table 4: Audio-based: instance level classi�cation average results for the 5-Fold cross-validation. Values with (*) are p < 0.05
inter-classi�er

Instance/Level Arousal Valence
Pr Re F1 Acc Pr Re F1 Acc

Sagha et. al [17] 0.526±0.065 0.527±0.066 0.526±0.067 0.525±0.073 0.597±0.033 0.596±0.035 0.597±0.042 0.585±0.043
KNN-10 0.627±0.056 0.615±0.052 0.619±0.055 0.631±0.054 0.688±0.048* 0.698±0.045* 0.693±0.051* 0.697±0.052

RBM 50-50 0.622±0.091* 0.651±0.098* 0.635±0.092* 0.640±0.093 0.741± 0.022* 0.735±0.034* 0.738±0.045* 0.742±0.052*

classi�cation yields be�er performances, which is consistent with
other studies on emotion instance/u�erance levels classi�cation
[21].

5 CONCLUSIONS
In this face-based and audio-based emotion recognition experi-
ments we identi�ed that the ConvNets represent a fundamental
and primary type of discriminative approach for classifying a�ec-
tive faces. �e inclusion of multiple input representations such as
ZCAwhite and dlib, and adding kNN and RBM classi�ers in the
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frame-aggregation task o�ers a robust enough system for a�ec-
tive faces recognition without combining other systems’ decisions
and extra multimodal approaches. For more e�ciency in terms of
the classi�cation, the kNN shows an increased performance inde-
pendently of the type of input representation. In terms of voice
expressions, the inclusion of multiple standardized datasets yields
a more accurate pipeline than using linear classi�ers and short
length datasets for identifying arousal/valence levels. RBM and
kNN classi�ers are again more indicated for this task than the SVM.

In the near future the inclusion of context-aware datasets such
as EU-emotion Stimulus represent an open door for new imple-
mentations of ConvNets fed by pictorial and/or audio stimuli in a
combination with cognitive and/or neurophysiological responses.
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