
Towards End-to-End Spoken Dialogue Systems with Turn Embeddings

Ali Orkan Bayer, Evgeny A. Stepanov, Giuseppe Riccardi

Signals and Interactive Systems Lab - University of Trento, Italy
{aliorkan.bayer, evgeny.stepanov, giuseppe.riccardi}@unitn.it

Abstract
Training task-oriented dialogue systems requires significant
amount of manual effort and integration of many independently
built components; moreover, the pipeline is prone to error-
propagation. End-to-end training has been proposed to over-
come these problems by training the whole system over the ut-
terances of both dialogue parties. In this paper we present an
end-to-end spoken dialogue system architecture that is based
on turn embeddings. Turn embeddings encode a robust repre-
sentation of user turns with a local dialogue history and they
are trained using sequence-to-sequence models. Turn embed-
dings are trained by generating the previous and the next turns
of the dialogue and additionally perform spoken language un-
derstanding. The end-to-end spoken dialogue system is trained
using the pre-trained turn embeddings in a stateful architecture
that considers the whole dialogue history. We observe that the
proposed spoken dialogue system architecture outperforms the
models based on local-only dialogue history and it is robust to
automatic speech recognition errors.
Index Terms: spoken dialogue systems, end-to-end learning,
sequence-to-sequence models

1. Introduction
Conventionally, spoken dialogue systems (SDSs) are built by
integrating several independent components, as shown in Fig-
ure 1. Traditional SDS components are the following: auto-
matic speech recognition (ASR), spoken language understand-
ing (SLU), dialogue manager (DM), natural language genera-
tion (NLG), and text-to-speech (TTS). Combination of indepen-
dently trained models may lead to problematic error propaga-
tion. In addition, design and implementation of these systems
may require significant amount of manual effort.
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Figure 1: Conventional spoken dialogue systems architecture.
The dotted rectangle shows the components that are covered by
the end-to-end model that is presented.

End-to-end learning overcomes these problems by training
SDSs using the data obtained from the available dialogues. End-
to-end learning has been applied to dialogue systems such as
short response generation [1], open domain conversational dia-
logue systems [2], task-oriented dialogue systems [3], and the
joint training of understanding models with a dialogue manager
to predict system actions [4].

The definition of the input and output in the end-to-end
learning for spoken dialog system varies in the literature. In [4],
for instance, the outputs of the end-to-end system are system
actions that are learned from user turns. However, generally
we can assume that two ends are user utterance and system re-
sponse. Thus, in this paper, we consider one end to be ASR
output and the other end to be the output of the NLG module;
as shown by the dashed box in Figure 1. Therefore, the input
to the proposed system is the ASR transcription of the user turn
and the output is the generated next system turn.

End-to-end learning for dialogue systems uses sequence-to-
sequence neural networks. Sequence-to-sequence models were
introduced for the task of machine translation in [5, 6]. They
consist of an encoder network which encodes the sentence in
the source language and a decoder which generates the corre-
sponding translation in the target language. End-to-end dia-
logue systems use a similar architecture [1, 2, 3] to predict the
next system turn from the current user turn. [1] and [2] present a
response generation system and an open domain conversational
system respectively that are both text-based. [3] proposes a
task-oriented SDS which lacks an SLU model; the system takes
slot-value pairs as input.

In this paper, we propose a task-oriented spoken dialogue
system architecture1 that is based on turn embeddings – a robust
representation of user turns. We utilize sequence-to-sequence
neural networks to learn turn embeddings of user turns by pre-
dicting previous and next system turns. Also we train an SLU
model jointly with the sequence-to-sequence model for captur-
ing the semantic information in the turn embeddings. Finally,
we build a dialogue model that uses the pre-trained turn em-
beddings of the user turns that are obtained by the sequence-
to-sequence model as input, and predicts the next system turns.
The dialogue model we propose uses the whole history of the
dialogue by using a recurrent neural network (RNN) architec-
ture.

2. Turn embeddings
In this section we define the neural network architecture for
learning turn embeddings and describe how these networks are
trained. Word embeddings have been used to map discrete word
representations onto a continuous space. It has been shown
that word embeddings improve the accuracy of natural language
processing tasks by representing semantically similar words
with similar vectors. One of the widely used approach to train
word embeddings is the skip-gram model that is given in [7].
The skip-gram model learns word embeddings by predicting the
preceding and succeeding words.

The aim of learning turn embeddings is to encode user turns
with a distributed representation and to map similar user turns
to similar vectors. Therefore, we use a similar strategy to the
skip-gram model, i.e., we train turn embeddings by predicting
the preceding and succeeding system turns. Each turn consists

1A complete functional SDS would require connecting the back-end.
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Figure 2: The sequence-to-sequence model architecture for learning turn embeddings. The sequence-to-sequence model is trained by
predicting the previous and the next system turns jointly with the semantic concepts; given the user turn. The LSTM cells of the encoder
that processes the user turn and of all the decoders that predicts the system turns are shared. The decoders share the same embedding
layer and the softmax layer; but a different embedding layer is used for the encoder. The turn embedding for a user turn, “TEi”, is
obtained at the shaded bold LSTM cell by using its hidden state. The shaded rectangle denotes the building block of a decoder unit.
The dotted arrows indicate that during decoding the output of the decoder unit is fed as input to the next decoder unit, however training
is performed with reference transcriptions.

of a sequence of words therefore, we use sequence-to-sequence
models as the building block.

2.1. Sequence-to-sequence models
The basic sequence-to-sequence model that is described in [6]
is used for the machine translation task. The model has an
encoder-decoder architecture, where the source language utter-
ance is encoded with an RNN encoder. The decoder uses the fi-
nal state of the encoder as the initial state and outputs a word se-
quence in the target language. The authors use long-short term
memory (LSTM) [8] cells to handle long-range dependencies
better.

We have extended this architecture by using multiple de-
coders to predict not only the next system turn but other next
and even previous system turns. The encoder and all of the
decoders share the same LSTM cells that are defined by the fol-
lowing equations:

ft = σ(Wfxxt +Wfmmt−1 + bf ) (1)

it = σ(Wixxt +Wimmt−1 + bi) (2)

ot = σ(Woxxt +Wommt−1 + bo) (3)

ct = ft � ct−1 + it � tanh(Wcxxt +Wcmmt−1 + bc) (4)

mt = ot � tanh(ct) (5)

The parameters of the LSTM cells are the weight matrices:
Wfx, Wfm, Wix, Wim, Wox, Wom, Wcx, Wcm; and the bias
vectors: bf , bi, bo, bc. xt represents the input at time t. The
forget gate, input gate, and output gate activations at time t is
given by ft, it, and ot. ct defines the cell activation vectors and
mt defines the cell output activation vectors at time t. σ is the
sigmoid function and � represents element-wise multiplication
operation.

In addition to LSTM cells, the sequence-to-sequence model
uses embedding layers to map one-of-n encoding of words onto

a continuous space. All of the decoders share the same embed-
ding layer, however for the encoder we use a different embed-
ding layer since the vocabularies of user and system turns differ.
The decoders also share a softmax layer to output word pre-
dictions for the system turn. The sequence-to-sequence model
that we use for training turn embeddings is depicted in Fig-
ure 2. This model predicts the previous and the next system
turns jointly with the semantic concepts given the user turn.

2.2. SLU model
SLU is one of crucial components of task-oriented spoken dia-
logue systems and maps the user utterance onto a task specific
meaning representation that is determined by the application
domain. SLU is usually modeled as a sequence labeling task
in which each word is assigned a semantic concept label. The
current state-of-the-art SLU systems use RNNs [9]. In [10] the
RNN that uses bi-directional LSTM cells is shown to outper-
form other architectures on multi-domain SLU.

In this paper we use bi-directional LSTM cells for the SLU
model. The SLU model uses two different LSTM cells; one
for the forward and one for the backward direction that are de-
fined by Equations 1-5. As shown in Figure 2 the bi-directional
LSTM cells take the cell output activations of the encoder cells
as input, and predict the semantic concept for the correspond-
ing word. We train the SLU model jointly with the decoders
that predict the system turns.

2.3. Training turn embeddings
Turn embeddings are trained jointly with all of the decoders
that predict the system turns and the SLU model. During train-
ing the whole network is unrolled and the current user turn is
fed into the encoder. The semantic concepts are predicted by
the bi-directional LSTM cells. The system turns are generated
one by one by the decoder networks by feeding the reference
transcription of the machine turns into the decoder inputs. The
parameters of the network is optimized by AdaGrad [11] algo-
rithm with the cross entropy cost function. On a trained net-
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Figure 3: The dialogue model architecture. The system takes
the pre-trained turn embeddings, “TEi”, for all the user turns
in a single dialogue as input and generates the corresponding
system turns at each step by the same decoder unit that are used
in sequence-to-sequence models. The recurrent architecture en-
ables the system to generate systems turns based on the whole
dialogue history.

work, the turn embeddings are obtained at the final LSTM cell
of the encoder network that is shaded in Figure 2. The ct and
mt vectors that are given by Equation 4 and 5 are concatenated
to obtain the turn embedding for the given user turn. In addi-
tion, the semantic concept labels for a given turn are obtained
from the SLU model.

3. Dialogue model
The pre-trained turn embeddings are used to train a complete di-
alogue model which considers the whole dialogue history. For
that purpose the dialogue model uses an RNN network with
LSTM cells, where each cell takes the turn embedding for the
user turn as input at that time step. Hence, each LSTM cell
represents the dialogue state at that turn. The system turn corre-
sponding to the user turn at a specific time is generated by using
a decoder network that is initialized by the LSTM cell state at
that time step. The decoders have the same architecture as the
decoders in the sequence-to-sequence models. The LSTM cells
in the decoders are shared by all of the decoders and by the di-
alogue model. The dialogue model that is defined is depicted in
Figure 3.

The training of the dialogue model is performed as follows.
The pre-trained turn embeddings for every user turn are ob-
tained from the last LSTM cell of the encoder in the architec-
ture given in Figure 2. The whole dialogue network is unrolled
and the pre-trained turn embeddings are fed into the network.
The corresponding system turns are generated by feeding the
reference transcriptions of the system turns as inputs to the cor-
responding decoders. The predictions for each system turn is
computed and the parameters of the whole network is optimized
by using AdaGrad [11] algorithm with the cross entropy cost
function. At each iteration the cost is calculated over the devel-
opment set and the learning rate is adjusted and early stopping
is applied to prevent overfitting.

4. Experimental work
The performance of the turn embeddings and the dialogue
model is evaluated on the human-machine part of the Italian
LUNA Corpus (LUNA HM) [12]. The dialogues are spoken
conversations in the hardware/software help desk domain that
were collected using Wizard of Oz (WOZ) technique: the hu-
man agent (wizard) reacting to user requests is following one of
the ten most common scenarios identified by the help desk ser-
vice provider. Responses to users were provided using Text-to-
Speech Synthesis (TTS). LUNA HM corpus is split into train-

ing, development, and test partitions which contain 542, 71, and
110 dialogues respectively.

The performance of the turn embeddings are evaluated
both on the understanding performance using concept error
rate (CER) and on the next turn generation performance using
BLEU [13] score. The performance of the dialogue model, on
the other hand, is evaluated only by BLEU. The models are eval-
uated both on the reference transcription and on the ASR output
of the test set.

4.1. ASR system
The ASR baseline for LUNA HM corpus is built using the
Kaldi [14] speech recognition toolkit. The hidden Markov
model (HMM) acoustic models are trained using mel-frequency
cepstral coefficients that are transformed by linear discriminant
analysis and maximum likelihood linear transform. These fea-
tures are then spliced in the window of [−3,+3]. The acous-
tic models are trained by discriminative training and by using
speaker adaptive training. The language model is a tri-gram
model with Kneser-Ney smoothing that is trained on the LUNA
HM corpus. The ASR has a word error rate of 21.3% on the test
set.

4.2. Baseline systems
The baseline SLU system is trained by using conditional ran-
dom fields (CRFs) [15]. To make it comparable with the neural
network models we have not used additional features over the
word features. The model uses a window of [-1, +1] to extract
the word features and uses the value of the previous concept
when predicting the current one.

The standard well-performing dialogue system baselines
are based on information retrieval models that select a sys-
tem response with respect to their similarity to training con-
versations (user or system turns) [16, 17]. For spoken con-
versation data, it has been observed that computing similarity
to other user turns and selecting linked responses yields bet-
ter results than computing similarity to system responses di-
rectly [16]. Consequently, we compute TF-IDF weighted co-
sine similarity between a test user utterance (as bag-of-words)
and all training user utterances, and select the system response
of the user turn with the highest score as a candidate (Nearest
Neighbor model of [16]). Additionally, we also compute the co-
sine similarity over the pre-trained word embeddings on Italian
Wikipedia [18]. The pre-trained word embeddings have a size
of 300 and trained over a window of [-5,5] by using the skip-
gram model [7]. Similarities computed considering just the cur-
rent user turn are used as baselines for the evaluation of the next
turn generation performance on the turn level in Table 1. To be
able to approach to the stateful dialogue model, similarities are
computed also by considering the previous system turn which
are reported in Table 2 as baselines.

4.3. Training turn embeddings
Turn embeddings are learned using the proposed sequence-
to-sequence model. The sequence-to-sequence networks
with the following architectures are evaluated: disjoint SLU
model (“SLU”), disjoint next system turn generation model
(“ST[+1]”), joint SLU model with the next system turn gen-
eration model (“SLU + ST[+1]”), joint SLU model with the
previous and the next system turn generation model (“SLU +
ST[-1,+1]”), joint SLU model with two previous and two next
system turns generation model (“SLU + ST[-2,+2]”).

The size of the LSTM cells and the size of the embeddings
are 256 for both the user turns and the system turns. The vocab-
ulary size for the user turns is 2300 and the vocabulary for the
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system turns is around 300 after replacing each ticket number
the system generates with a special token. At every iteration the
cost is computed on the development set and the learning rate
is halved when the cost increases on the development set. Early
stopping is performed when no further improvement is obtained
on the development set. During the testing phase the system
turns are obtained by greedy decoding (with decoding with a
beam size of 1). The performance of the sequence-to-sequence
models with the relevant baselines are given in Table 1. For
each network architecture, 10 models are trained with different
random initializations, only the best performing models on the
reference transcription of the development set is reported. The
models are implemented using Tensorflow library [19].

Table 1: Performance of the sequence-to-sequence models on
SLU and next system turn (NST) generation performance. The
baselines are presented with the ’BL:’ label. Evaluations are
done on the reference transcriptions, “Ref.”, and on the ASR
transcriptions, “ASR”, of the test set.

Model SLU (CER) NST (BLEU)
Ref. ASR Ref. ASR

BL: CRF 26.0% 30.5% NA NA
BL: TF-IDF NA NA 30.4 30.7
BL: Word emb. NA NA 30.7 27.0
ST[+1] NA NA 24.3 23.5
SLU 25.2% 28.6% NA NA
SLU + ST[+1] 23.4% 28.0% 28.3 26.1
SLU + ST[-1,1] 23.0% 27.3% 28.8 27.0
SLU + ST[-2,2] 23.7% 27.1% 28.3 26.9

As can be seen from Table 1 the neural network SLU models
outperforms the CRF baseline and more robust to ASR noise.
We observe that training the SLU jointly with system turns im-
proves the SLU performance. “SLU + ST[-1,1]” model, which
considers the preceding and succeeding turns, performs the best
among other neural network models. Adding more context does
not improve the performance. The performance of sequence-to-
sequence models are below the baselines for next turn genera-
tion performance. However, we use the turn embeddings ob-
tained form these models to train stateful dialogue models at a
later stage, and do not use them to generate turns.

Turn embeddings are qualitatively compared to dialogue
acts (DAs) as defined in the recent international ISO stan-
dard for DA annotation – Dialogue Act Markup Language (Di-
AML) [20]. The DiAML annotation scheme consists of 56 DA
tags (communicative functions), organized into 9 dimensions,
such as General, Social Obligations Management, Time Man-
agement, etc. The user turns in the LUNA HM test set are
automatically annotated for ISO dimensions and DA tags us-
ing models trained on LUNA human-human corpus by [21];
and manually corrected. We visualize the user turns obtained
from ASR hypotheses by a t-Distributed Stochastic Neighbor
Embedding (t-SNE) [22] plot in Figure 4. We only show the
most frequent DA tags: Answer, Inform, Confirm and show the
whole Social dimension as a single class. We observe that turn
embeddings cluster user turns with respect to their DAs.

4.4. Dialogue model
The training of the dialogue model (DiaM) is performed as fol-
lows. The turn embeddings for the training and the development
set are obtained by using each sequence-to-sequence model that
are presented in the previous section. The dialogue model uses
the same size of LSTM cells and the same size of embeddings
as the sequence-to-sequence models. During training the learn-
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Figure 4: t-SNE plot of turn embeddings for the ASR hypotheses
of the test set. Colors represent DA classes.

ing rate is adjusted by calculating the cost on the development
set and early stopping is applied. The system turn is obtained by
using greedy decoding. As done for the turn embedding models
each dialogue model is trained with 10 different random initial-
izations and the performance (BLEU score) of these models are
presented in Table 2 with the relevant baselines. The best per-
forming models on the reference transcription of the develop-
ment set are reported with the average scores of the 10 different
random initializations in parentheses.

Table 2: Performance (BLEU score) of the dialogue model and
dialogue system baselines with local history on the test set.

Model Reference ASR
BL: TF-IDF 35.1 36.0
BL: Word emb. 29.4 32.2
DiaM with ST[+1] 42.2 (41.4) 39.2 (39.5)
DiaM with SLU 43.0 (38.8) 41.1 (38.6)
DiaM with SLU + ST[+1] 41.4 (41.1) 40.7 (40.0)
DiaM with SLU + ST[-1,1] 45.2 (41.8) 46.0 (42.8)
DiaM with SLU + ST[-2,2] 41.9 (40.3) 44.8 (41.7)

We observe that the best performing dialogue model is the
one which is trained with the turn embeddings obtained from the
“SLU + ST[-1,1]” model. Although, the embeddings from the
“SLU” model has a good best performance, the average score
is low, i.e., it is hard to optimize the dialogue model consis-
tently with these turn embeddings. Including the previous sys-
tem turns in the turn embeddings makes the dialogue model ro-
bust to ASR noise. We obtain no additional gain by increasing
the window size of the system turns, on the contrary, the per-
formance drops. Finally, all of the dialogue models outperform
the baselines, since the dialogue models use the whole dialogue
history and the baselines only use a local history.

5. Conclusion
In this paper we propose turn embeddings as robust representa-
tions of user turns for building spoken dialogue systems. Turn
embeddings can be trained by predicting the preceding and suc-
ceeding system turns from the user turn by using sequence-
to-sequence models. Training an SLU model jointly with the
sequence-to-sequence models improves the performance of the
SLU model which is a crucial component of spoken dialogue
systems. Also, turn embeddings learn representations that clus-
ter turns with respect to DAs implicitly. A dialogue model that
considers the whole dialogue history is built by using the pre-
trained turn embeddings. We observe that the pre-trained turn
embeddings trained with the previous system turns makes the
dialogue model more robust to ASR noise.
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