
Active Annotation: bootstrapping annotation lexicon and guidelines for
supervised NLU learning

Federico Marinelli12, Alessandra Cervone1, Giuliano Tortoreto2, Evgeny A. Stepanov2,
Giuseppe Di Fabbrizio2, Giuseppe Riccardi1

1Signals and Interactive Systems Lab, University of Trento
2VUI Inc.

fdm@vui.com, alessandra.cervone@unitn.it, gtr@vui.com, eas@vui.com, pdf@vui.com,
giuseppe.riccardi@unitn.it

Abstract
Natural Language Understanding (NLU) models are typically
trained in a supervised learning framework. In the case of in-
tent classification, the predicted labels are predefined and based
on the designed annotation schema while the labeling process
is based on a laborious task where annotators manually inspect
each utterance and assign the corresponding label. We propose
an Active Annotation (AA) approach where we combine an un-
supervised learning method in the embedding space, a human-
in-the-loop verification process, and linguistic insights to create
lexicons that can be open categories and adapted over time. In
particular, annotators define the y-label space on-the-fly dur-
ing the annotation using an iterative process and without the
need for prior knowledge about the input data. We evaluate the
proposed annotation paradigm in a real use-case NLU scenario.
Results show that our Active Annotation paradigm achieves ac-
curate and higher quality training data, with an annotation speed
of an order of magnitude higher with respect to the traditional
human-only driven baseline annotation methodology.

1. Introduction
Supervised methods are arguably one of the most popular and
used techniques for a wide range of tasks in Machine Learning
(ML), especially Natural Language tasks. This class of tech-
niques is based on the notion of “programming by example”,
where the annotation guidelines let the designers specify the
output that they are looking for. Even unsupervised learning
methods require to be evaluated on labelled examples in order
to assess their quality. For a typical natural language annotation
task, a language expert would define the annotation guidelines
document that usually includes a data schema, annotation in-
structions and examples. The annotation schema specifies the
y-label space the ML model has to predict. Instructions and
examples instruct annotators about the rules to follow in order
to assign correct text classification labels. In general it is diffi-
cult to have a clear a priori view of the data that has to be an-
notated: having thousand of documents to annotate requires a
lot of human effort in order to provide well-defined annotation
guidelines. In this paper we focus on the following research
question: What is the optimal balance between accuracy and
speed in human annotation tasks? In particular, we investigate
the hypothesis that incorporating the notion of iteration in the
annotation process might lead to faster and more accurate an-
notations, given the difficulty in correctly defining the annota-
tion task a priori. To address this challenge, we first introduced
the notion of an iterative annotation process where annotations
are refined interactively and dynamically. As second step, we

focused a on semi-automatic annotation [14] where machines
leverage consistency, memory and recall while humans deal
with context, ambiguity and precision. Additionally, in order
to explore the optimal ratio between annotation speed and ac-
curacy, we choose to break down complex annotation tasks into
binary questions, that we assume to be simpler and faster to
annotate. This approach allows annotators to speed up the an-
notation process and, at the same time, measure the reliability
of the process.

The paper is structured as follows: we first provide a de-
scription of related work (Section 2) in active annotation, in
Section 3 we present a high-level overview of the proposed al-
gorithm. Next, in Section 4 we explain the guidelines definition
procedure and describe our proposed annotation process. Fi-
nally, we present experimental results (Section 5) and draw our
conclusions (Section 6).

2. Background
In this section, we first discuss relevant work from the emerging
field of human-in-the-loop computational architectures applied
for data annotation, then we review existing work methodolog-
ically related to our proposed framework.

Human-in-the-loop systems, or human-machine hybrid sys-
tems, are aimed at exploiting the complementarity between the
intelligence of humans and the scalability of machines to solve
complex tasks at scale [6]. The number of human-in-the-loop
systems proposed recently increased, demonstrating the power
of human intelligence when coupled with machines in solving
complex tasks for intelligent machines (e.g. Recaptcha for OCR
application [10]). Crowd-sourcing is often used to collect and
annotate data to train supervised machine learning models in
many natural language processing tasks, such as sentiment and
opinion mining [13] and question answering [7]. A very popular
and well investigated framework in order to cope with the lack
of training material, that uses a human-in-the-loop paradigm, is
the active learning paradigm [5]. It has been applied to vari-
ous NLP tasks with impressive results in reducing the amount
of annotated training data.

Among the applications of Active Learning, the procedure
has been combined with annotation error detection for speeding
up annotation processes and minimizing the human effort [14].
The created procedure, called Active Annotation, improved
convergence time to reliable automatic annotation, selecting for
annotation the most informative examples, thus reducing the
number of training examples needed to achieve a given level of
performance through the Active Learning paradigm. As in Ac-
tive Annotation, the proposed procedure selects at each turn the
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most informative examples to be annotated by the user. Con-
trary to the previous approaches that required a predefined y-
label space before the annotation process, in our annotation
paradigm the labels are created on-the-fly during the annota-
tion, without the need for prior knowledge of the input data.
Such paradigm is particularly effective when no labelled data
are available.

3. Active Annotation
The Active Annotation methodology employs both human and
machine intelligence to create data for machine learning mod-
els. The final objective is to shorten the time to obtain effective
machine learning models from scratch. Algorithm 1 shows a
general overview of the Active Annotation methodology that
we are going to present.

Algorithm 1: Active Annotation Algorithm Overview

Input = D – set of unlabelled examples;
E = Embeddings-Computation(D);
E’ = Embeddings-Dimensionality-Reduction(E);
CE′ = Embeddings-Clustering(E’, K);
while D not Empty do

if Guidelines-Definition-Procedure(CE′ ) == True
then

Annotation-Procedure(D, CE′ )
end

end

D – represents the unlabelled examples that we want to label.
Embeddings-Computation – refers to a function that takes as
input the unlabelled examples D and returns the relative vector
representation for each data point, namely E.
Embeddings-Dimensionality-Reduction – represents a function
that takes as input a high dimensional vector representation of
the input data, the embedding E, and returns a vector with lower
dimensions for each data point, namely E’.
Embeddings-Clustering – is a function that takes as input the
vector representation of the data and clusters it according to the
given clustering methodology. The output of this function are K
clusters of the given data, namely CE′ .
Guidelines-Definition Procedure – is the process by which the
annotator, given N key data points and an automatically com-
puted cluster label, is asked to provide a y-label to the given N
data points. The annotators can either provide a label or skip if
they do not know how to annotate the proposed data points.
Annotation-procedure – is the process that follows the
Guidelines-Definition procedure. In case the annotator provides
a y-label during the previous step, the algorithm proposes K data
points, that are very similar to the N data points that the annota-
tor has already labelled during the previous step. The annotator
is asked to analyze the proposed K data points and annotate
them through a binary decision process.
The algorithms initially represents the unlabelled data-points in
a distributed representation, vectors, so that Machine Learning
models can easily process them. We used the “Universal Sen-
tence Encoder” [4] algorithm to transform sentences into vec-
tors. On the encoded sentence, we apply a dimensionality re-
duction algorithm. Therefore the number of parameters pro-
vided to the Active Learning component is decreased, as well
as the noise and the sparsity of the data, effectively leading to

a faster training process. Speed is a major concern, since the
proposed Active Annotation paradigm is served through web
server, keeping system latency low is important to support the
annotation process. To perform dimensionality reduction we
apply the Principal Component Analysis (PCA) [1], on the re-
sulting data we perform unsupervised clustering using K-Means
clustering, in particular the k-means++ [2] implementation. K-
means++ provides faster and better performances compared to
the standard algorithm [2], by selecting one cluster centroid
randomly and then searching for other centroids. The selec-
tion of the number of clusters, k, in k-means algorithm is es-
sential for our task, since the created clusters drive the anno-
tators experience. Selecting the correct k is complex and it
is affected by the shape, scale, the distribution of data points
and the level of detail required by the user. To choose the op-
timal k we apply the “Elbow Method” [3] aiming to balance
between maximum compression of the data using a single clus-
ter, and maximum accuracy by assigning each data point to
its own cluster. After the clustering phase, we start the itera-
tive annotation process, that is the core procedure of the Active
Annotation methodology. It is composed of two main phases,
that are called the “Guidelines-Definition-Procedure” and the
“Annotation-Procedure”, respectively. We are going to describe
in details these two phases in the following section.

4. Algorithms
4.1. Guidelines Definition Procedure

Algorithm 2: Guidelines Definition Pseudo Algorithm

Input = CE′ – Clustered input data;
Select one random cluster c inside CE′ ;
Select the N most informative data points in c as Pivots;
Compute a cluster label Lc;
Propose the N Pivots data points and Lc to the annotator;
if Annotator provides a label then

return True;
else

return False;
end

The Guidelines definition procedure is one of the two core com-
ponents of the Active Annotation paradigm. Given a number of
k clusters, the algorithm selects randomly a cluster c. Once a
cluster c has been selected, the algorithm selects the N most rep-
resentative data points within the cluster c as Pivot data points.
Pivots are selected choosing the N points closest to the cluster
c’s centroid. The intuition is that since Pivot data points are the
nearest to the centroid, they also are the most similar among
each others, hence most probably they have the same label. In
this case the decision of the hyper-parameter N depends highly
on how much cognitive effort we want the annotator to expose
during the annotation. In our experiments we set N to 3. After
that, the algorithm also computes automatically a cluster label
Lc (Section 4.2). Once a cluster label Lc and the N Pivot data
points are selected, the procedure presents them to the annota-
tor. She can either decide to provide a label, that could be equal
or not to the one automatically computed Lc, or can decide to
skip. In case the annotator decides to go ahead without provid-
ing a label, the algorithm proceeds by selecting a new cluster c
randomly. Then it computes a new cluster label Lc and selects
N new data points inside the last selected cluster and finally



presents them to the annotator again. Given the iterative nature
of the guidelines definition phase, we also call it exploration
phase: the annotator may quickly explore the real distribution
of the labels within the input data just by iteratively inspecting
Pivot data points inside the clusters. This is based on the as-
sumption that it is likely that data points inside the same cluster
have the same label, conversely, data points belonging to dif-
ferent clusters have different labels. Moreover, by selecting a
cluster randomly at each iteration it is likely that the next se-
lected cluster will have a different label with respect to the last
selected cluster, which, in our opinion, will help annotators to
provide better annotations.

4.2. Predicate-Argument Label Extraction Procedure

Algorithm 3: Predicate-Argument Extraction Algorithm

Input = One cluster c ∈ CE′ (clustered input data);
foreach Sentence S ∈ c do

SVO += Subject-Verb-Object-Triplet(S)
end
Lemmatization-procedure(SVO) ;
Stop-words-removal-procedure(SVO) ;
Predicate = most-common-verb(SVO);
Argument = most-common-object(SVO);
return string(Predicate Argument);

The Algorithm 3 shows the procedure that we developed in or-
der to automatically extract a cluster label inside a given clus-
ter c. In current work, as already discussed, we use the Ac-
tive Annotation Methodology in order to generate labelled data
for supervised text classification tasks. We tackle the task of
discovering user intents in utterances addressed to a conversa-
tional interaction system. A user intent describes what a user is
looking for when she conducts a search query or while she is
conversing with a conversational agent. We believe that a good
way to represent the intent of a sentence is to use a predicate-
argument structure [15]. In particular, a predicate identifies a
relation between entities denoted by the subject and comple-
ments; an argument is an expression that helps complete the
meaning of a predicate that refers to the object of the sentence.
An example could be the utterance“I’d like to add those items
to the shopping-cart” where the argument is “shopping-cart”
and the predicate is represented by the verb “add”. In order to
extract such predicate-argument intent-label from all the sen-
tences within a cluster c the algorithm extracts subject-verb-
object (SVO) triplets from all the sentences in c. Then stop-
words are removed, and verbs and the objects are lemmatized.
The extracted SVO triplets are parsed and the most frequent
predicate and argument are selected. If the procedure does not
find an argument and a predicate among all the sentences it re-
turns the label “inform none”. The off-the-shelf tools are used
to extract the SVO triplets.1

4.3. Annotation Procedure

Once the annotator has provided a y-label for the proposed N
Pivot data-points during the guidelines-definition procedure the
Active Annotation algorithm proceeds with the so called “An-
notation Procedure”. In this phase, the algorithm proposes the
K nearest data points to the N Pivots previously selected. The

1https://spacy.io

selection of the data point is performed applying K-Nearest-
Neighbours Search algorithm [11].2 The number of proposed
data point is arbitrarily set to 5, but it can be increased by the
annotator through UI up to a predefined threshold. During this
phase a binary decision process is employed for each proposed
data point, in which the annotator is asked to check-mark within
the annotation tool the proposed sentences that belong to the y-
label of the N Pivot data points. When the annotation of the
proposed sentences is complete, she can proceed to the next
Active Annotation iteration by clicking a confirm button. When
the button is clicked, check-marked sentences are added to the
labelled pool and are removed from the unlabelled data points.

5. Experiments
5.1. Active Annotation Web-tool

We deployed the Active Annotation paradigm as an annotation
web-tool where the annotator can annotate the unlabelled data
points. The annotation web-tool needs to have several require-
ments in order to enable fast, accurate and reliable annotations.
In particular, we designed a well-structured User Interface (UI)
focusing on annotator’s needs, accessibility of elements, and
simplicity. We avoid using long text paragraphs, guiding the
UI navigation through the graphical disposition of the objects.
We also strategically tried to use colors and textures in order
to direct the attention of the user during the annotation pro-
cess. The web-annotation tool also requires a back-end part that
constantly performs computations in order to enable the Active
Learning paradigm to help the user during the annotation pro-
cess. The back-end has to be efficient and fast: it is of primary
importance that the annotation process is not slowed down by
the back-end computations. The Annotation Web-Tool was de-
veloped using a framework called “Dash Plotly” 3. Dash app
code is declarative and reactive, which makes it easy to build
complex apps that contain many interactive elements.

5.2. Baseline

To assess the effectiveness of the active annotation tool, we
have developed a baseline annotation tool. Similarly to the Ac-
tive Annotation Methodology, in the baseline we pre-compute
a predicate-argument label for each sentence in the unlabelled
data to annotate using Algorithm 3. Thus, only the annotation
methodology is compared and not the automatic labelling algo-
rithm.

In the baseline, randomly selected sentences are pre-
sented one at a time together with the pre-computed predicate-
argument labels. The design of the interface is identical to the
guidelines-definition of the active annotation web tool. Here the
user is asked to read the sentence, the cluster-label Lc and de-
cide either to: confirm the proposed automatically computed
label, provide a new label, or skip. Once the user has con-
firmed a label for the proposed sentences, the algorithm adds
the sentence-label pairs in the labelled pool and removes it from
the unlabelled set D.

5.3. Dataset

The dataset used for experiments is the movie-ticket booking
conversations from human-human “e2e Dialogue Datasets” [9].
We have selected 2,140 user turns from the dialogues, maintain-
ing the distribution of the labels. We annotated this data with

2https://github.com/nmslib/nmslib
3https://dash.plot.ly/



new intent labels, using a predicate-argument y-label structure
with 14 labels in total. Labels were verified by three domain ex-
pert annotators. We then selected as test-set 140 sentences, with
10 sentences for each y-label. The remaining 2,000 sentences
are used as unlabelled dataset D.

5.4. Experimental Design

In order to evaluate the performance of the Active Annotation
paradigm presented in this work we selected four annotators.
The annotators did not have any prior knowledge about the an-
notation tasks they had to perform. We conducted two exper-
iments with each annotator, each one lasting 25 minutes. In
each experiment an annotator was asked to annotate the unla-
belled dataset D: in the first experiment we used the baseline
annotation web-tool and in the second experiment we used the
Active Annotation web-tool. We dedicated 10 minutes to train
the annotator to use the annotation web tools. The annotator
was asked to use the Baseline annotation web-tool, for 25 min-
utes, in order to label as many sentence in D as possible. After
that, she was asked to label as many sentences as possible in
D using the Active Annotation web-tool, even here for 25 min-
utes. In particular, the first two annotators used first the baseline
web-tool and then the active annotation web-tool, for the other
two annotators the order was reversed.

5.5. Results

We compare the results obtained using the Active Annota-
tion paradigm with those obtained with the Baseline annotation
paradigm. In Table 1 we report the mean and the standard de-
viation of how many data points the annotators were able to
annotate during each experiment, with the relative number of
labels. In order to assess the quality of the labelled data, we
trained a CNN classifier [8] to predict the intent labels and eval-
uated the resulting model performance by using a stratified 5-
fold cross-validation methodology. To mitigate eventual issues
with the relatively small training sample, we randomly extracted
the same amount of data annotated in the baseline annotation
experiments. The evaluation metric is the F1-score. In Table 2
we report the evaluation of the data labelled, during each experi-
ment, over the test-set that we created (discussed in section 5.3).
In order to do such evaluation, since during each experiment the
annotators end up with different labels, we manually mapped
the labels provided by the annotators with the ground-truth la-
bels on the test-set, where possible. On average we were able
to manually map the 80% of the intent-labels. We report the
mean and standard-deviation of the inter-annotation agreement,
computed using the Cohen’s kappa coefficient [12], between the
annotations provided by the annotators and the ground truth an-
notations. For each experiment we also trained a CNN intent
classifier [8] on the labelled data and we evaluated the classi-
fier over the test-set. Also in this case, we manually mapped the
labels provided during the experiments with the ground-truth la-
bels on the test-set. Using the Active Annotation paradigm we
achieve better F1-score, both in the cross-validation evaluation
and in the test-set evaluation. Also the annotation-agreement is
better by using the Active Annotation methodology. Moreover,
using our technique, the annotators were able to annotate a num-
ber of sentences of an order of magnitude higher with respect to
the baseline annotation paradigm.

Baseline AA
µ σ µ σ

Sentences labelled 118.6 18.5 999.3 171.4
Number of labels 10.3 1.2 8.6 0.9

Cross-Validation F1 0.83 0.05 0.91 0.02

Table 1: Mean and standard-deviation results of the four exper-
iments. We report the total number of sentences labelled, the
total number of labels provided by the annotators and the strat-
ified 5-fold cross-validation F1 computed on the labelled data
generated during each experiment.

Baseline AA
µ σ µ σ

F1 Test-Set 0.81 0.04 0.89 0.03
Annotation Agreement 0.61 0.02 0.64 0.01

Table 2: Mean and standard-deviation results of the four exper-
iments. We report the evaluation of the CNN intent classifica-
tion model trained with the labelled data generated during each
experiment and evaluated on the test-set. We also report the
annotation-agreement, computed using the Cohen’s kappa co-
efficient, between the labels provided during each experiment
with those on the ground truth annotations.

6. Conclusions
We presented an Active Annotation paradigm where we com-
bined unsupervised learning in the embedding space, a human-
in-the-loop methodology and linguistic insights to create data
for machine learning models. This methodology was evalu-
ated in a real use-case Natural Language Understanding sce-
nario: four internal annotators were enrolled in order to anno-
tate a pool of sentences with intents as target variables. The Ac-
tive Annotation has been compared with respect to traditional
human-only driven baseline annotation methodology. The re-
sults showed that the quality of the annotations is improved
by leveraging the Active Annotation parading, yielding bet-
ter annotation-agreement and the end text-classification model
trained with the labelled data reached better F1-score perfor-
mances on the test-set. Moreover, the annotation speed is faster
by leveraging the Active Annotation paradigm: in all experi-
ments the annotators were able to annotate a number of sen-
tences of an order of magnitude higher. Also, we observed a
lower number of end labels when using the AA paradigm. All of
the above improvements lead us to conclusion that Active anno-
tation is an efficient and powerful methodology that can reduce
the time required to obtain training data for machine learning
models and gives the possibility to create lexicons that can be
open classes and adapted over time.
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